From 1 - 10 / 54
  • Magnetotellurics (MT) is a passive geophysical method which uses natural time variations of the Earth's magnetic and electric fields to measure the electrical resistivity of the sub-surface. Electrical resistivity is a bulk property of a volume of Earth material and is associated with factors such as rock composition, porosity and permeability as well as temperature and pressure. The Magnetotelurics (MT) Data Collection includes datasets from The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) and regional-scale MT surveys across the Australian continent. These data were collected by Geoscience Australia in collaboration with the State and Territory Geological Surveys and other partners. <b>Value: </b>Magnetotelluric data to expand the geoscientific understanding of the earth's lithospheric structure and provide new insights into Australia's onshore energy and mineral potential. <b>Scope: </b>AusLAMP is being conducted over multiple years to create a national MT dataset and map lithospheric structure of the Australian continent. MT data have also been acquired for mapping crustal structure and resource potential at regional scale. These data provide valuable information for multi-disciplinary interpretations. To view the magnetotellurics data via the Geoscience Australia internet page click on the following URL: <a href="https://www.ga.gov.au/about/projects/resources/regional-mt-program">https://www.ga.gov.au/about/projects/resources/regional-mt-program</a> For further information about the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) click on the following URL: <a href="https://www.ga.gov.au/about/projects/resources/auslamp">https://www.ga.gov.au/about/projects/resources/auslamp</a>

  • 3D structural and geological models that provide insight and understanding of the continents subsurface. The models capture 3D stratigraphy and architecture, including the depth to bedrock and the locations of different major rock units, faults and geological structures. <b>Value: </b>These models are valuable for exploration and reconstructions of Australia's evolution <b>Scope: </b>Contains a variety of 3D volumetric models and surfaces that were produced for specific projects at regional to continental scale.

  • This collection contains all national level bathymetry grids held by Geoscience Australia (GA) dating back to survey data obtained since 1993. <b>Value: </b>Bathymetry data is used for a wide range of marine applications including: navigation, environmental assessment, jurisdictional boundaries, resource exploration. <b>Scope: </b>Data holdings lying within the offshore area of Australia, including international waters. <b>To access the AusSeaBed Marine Data Portal</b> use the following link: <a href="https://portal.ga.gov.au/persona/marine#/">https://portal.ga.gov.au/persona/marine#/</a>

  • Segmented time series data for earthquake events. Data are in raw digital counts and have associated instrument metadata for calibration to physical ground-motion measures. These data are used to inform a range of applications in seismic hazard assessment and for assessing the utility of current observatory practice for magnitude assessment. <b>Value: </b>Used in the selection and development of ground-motion models used for seismic hazard purposes. These data also enable the assessment and development of new earthquake magnitude formulae. <b>Scope: </b>Data has been collected on an ad hoc basis, some early digital data dates back to 1989 (i.e. Newcastle earthquake), and the dataset continues to grow as earthquakes of interest occur, or various temporary deployments are rolled out. Instrument metadata is not always known.

  • Collection of Geoscience Australia's high-resolution elevation surveys collected using Light Detection and Ranging (LiDAR) and other instrument systems. <b>Value: </b>Describes Australia's landforms and seabed is crucial for addressing issues relating to the impacts of climate change, disaster management, water security, environmental management, urban planning and infrastructure design. <b>Scope: </b>Selected areas of interest around Australia.

  • Comprises a national satellite imagery mosaic and derived information products produced by a collaboration of CSIRO, Geoscience Australia (GA) and State and Territory Surveys, and several additional national and international collaborators. Mineral products were derived using a validated mosaic of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. <b>Value: </b>The data are used to understand distributions of and changes in surface materials and assessment of environmental, agricultural and resource potential. <b>Scope: </b>This dataset covers the continent with the intent to provide the best quality mosaic from 10+ year archive of scenes across Australia (i.e., lowest cloud/vegetation cover, high sun angle etc)

  • This collection includes calibrated time-series data and other products from Geoscience Australia's geomagnetic observatory network in Australia and Antarctica. Data dates back to 1924. <b>Value: </b>These data are used in mathematical models of the geomagnetic field, in resource exploration and exploitation, to monitor space weather, and for scientific research. The resulting information can be used for compass-based navigation, magnetic direction finding, and to help protect communities by mitigating the potential hazards generated by magnetic storms. <b>Scope: </b>Continuous geomagnetic time series data, indices of magnetic activity and associated metadata, Data dates back to 1924.

  • This is a physical collection of photographic materials created by staff of Geoscience Australia (GA) and its predecessor organisations in the course of their work between the early 1920s and the early 21st century. <b>Value: </b>Historic and scientific significance. Many sites visited are remote and have rarely been revisited. Some images are of people from First Nations, flora and fauna of Australia, its territories and other countries. <b>Scope: </b> Geographical scope is largely Australia, pre- and post-Independence Papua New Guinea, and the Australian Antarctic Territory, but other countries and territories are represented. Thematic scope varies considerably, covering a diverse range of operations of a geological survey, including land and marine surveys, field installations, rock and fossil specimens (in situ, laboratory and under microscope), buildings, passport photographs, etc. The majority of the physical image collection (photos, negatives and glass plates) is still hardcopy only and stored in an access restricted room. This collection requires extensive work to develop a comprehensive catalogue of its contents and explore options for digitisation. <b>Queries can be directed to Records Management Unit (RMU) via the <a href="https://supportworkplace.ga.gov.au/CherwellPortal/Geoscience/">Support Workplace tool</a>. </b> More recent mages received from business area's and departing staff members have been digitised and are stored in HPRM folders: P14/50 - GA Image Collection (A20/615, A20/614, A20/598, A18/111) A spreadsheet containing metadata (D2019-4576) for these images (previously delivered via a now decommissioned database), can be viewed via the Download tab. Note: This HVC record is currently only visible to internal GA staff. <b>If anyone has any additional photographic collections that reflect the history of Geoscience Australia (or its predecessor organisations) the Records Management Unit would be very interested in chatting to you.</b>

  • Document distribution and location of a variety of built infrastructure features, including: ports, power stations, electricity transmission lines and substations. <b>Value: </b>These locations are not authoritative or comprehensive, but represent a valuable resource for visualisation, decision support and planning activities. <b>Scope: </b>National dataset at resolution relevant for presentation of regional spatial data such as digital maps or regional decision making, ie., does not include many small scale or local distribution infrastructure types such as lines to houses.

  • The Onshore Seismic Data Collection includes regional crustal scale seismic datasets across the Australian Continent collected by Geoscience Australia (GA) and its predecessors, the Bureau of Mineral Resources (BMR) and Australian Geological Survey Organisation (AGSO) in collaboration with the State and Territory Geological Surveys, Australian National Seismic Imaging Resource (ANSIR) ( National Research Facility for Earth Sounding), AuScope Earth Imaging (under the Australian Government's National Collaborative Research Infrastructure Strategy), Universities and other industry and research partners. The collection preserves raw and processed seismic data. The GIS dataset of Onshore Seismic Surveys from 1976 to present (updated May 2019) shows locations of seismic recording stations (the original ecat <a href="https://pid.geoscience.gov.au/dataset/ga/100802">100802</a>). It is generated from a database containing coordinates of all Geoscience Australia's seismic traverses. This Shape file enables users to display seismic lines on a map and contains links to data packages available for free download. < b>Value: </b>Data used to expand the geoscientific understanding of the earth's crustal structure and provide new insights into Australia's onshore energy and mineral potential. This data can be used for the assessment of resource potential. <b>Scope: </b>Primarily targeted regional crustal scale cross-sections (2D) for research purposes. <b> To view the seismic dataset by state use the following URL: </b> https://www.ga.gov.au/about/projects/resources/seismic