From 1 - 10 / 98
  • Understanding marine biodiversity has received much attention from an ecological and conservation management perspectives. The Australian Government's Department of the Environment, Water, Heritage and the Arts has initiated the Commonwealth Environment Research Facilities (CERF) initiative to enhance the understanding of Australia's natural environment for policy making. One part of the CERF initiative through the marine biodiversity hub was to predict biodivesity from expansive physical variables. This talk presents some of the work arising from this area.

  • Geoscience Australia carried out a marine survey on Lord Howe Island shelf (NSW) in 2008 (SS06_2008) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments and infauna, rock coring, observation of benthic habitats using underwater towed video, and measurement of ocean tides and wave generated currents. Subbottom profile data was also collected to map sediment thickness and shelf stratigraphy. Data and samples were acquired using the National Facility Research Vessel Southern Surveyor. Bathymetric data from this survey was merged with other preexisting bathymetric data (including LADS) to generate a grid covering 1034 sq km. As part of a separate Geoscience Australia survey in 2007 (TAN0713), an oceanographic mooring was deployed on the northern edge of Lord Howe Island shelf. The mooring was recovered during the 2008 survey following a 6 month deployment. The "2461_ss062008" folder contains raw multibeam backscatter data of the Lord Howe Rise. The raw multibeam backscatter data were collected along survey lines using SIMRAD EM300 from aboard RV Southern Surveyor

  • Demands are being made of the marine environment that threaten to erode the natural, social and economic benefits that human society derives from the oceans. Expanding populations ensure a continuing increase in the variety and complexity of marine based activities - fishing, power generation, tourism, mineral extraction, shipping etc. The two most commonly acknowledged purposes for habitat mapping in the case studies contained in this book are to support government spatial marine planning, management and decision-making and to support and underpin the design of marine protected areas (MPAs; see Ch. 64).

  • Geoscience Australia carried out marine surveys in southeast Tasmania in 2008 and 2009 (GA0315) to map seabed bathymetry and characterise benthic environments through observation of habitats using underwater towed video. Data was acquired using the Tasmania Aquaculture and Fisheries Institute (TAFI) Research Vessel Challenger. Bathymetric mapping was undertaken in seven survey areas, including: Freycinet Pensinula (83 sq km, east coast and shelf); Tasman Peninsula (117 sq km, east coast and shelf); Port Arthur and adjacent open coast (17 sq km); The Friars (41 sq km, south of Bruny Island); lower Huon River estuary (39 sq km); D Entrecastreaux Channel (7 sq km, at Tinderbox north of Bruny Island), and; Maria Island (3 sq km, western side). Video characterisations of the seabed concentrated on areas of bedrock reef and adjacent seabed in all mapped areas, except for D Entrecastreaux Channel and Maria Island. The "challenger" folder contains processed multibeam backscatter data of the South East Tasmania Shelf. The SIMRAD EM3002 multibeam backscatter data were processed using the CMST_GA MB Process, a multibeam processing toolbox codeveloped by Geoscience Australia and Curtin University of Technology.

  • A growing need to manage marine biodiversity at local, regional and global scales cannot be met by applying the limited existing biological data sets. Abiotic surrogacy is increasingly valuable in filling the gaps in our knowledge of biodiversity hotspots, habitats needed by endangered or commercially valuable species and systems or processes important to the sustained provision of ecosystem services. This review examines the utility of abiotic surrogates across spatial scales with particular regard to how abiotic variables are tied to processes which affect biodiversity and how easily those variables can be measured at scales relevant to resource management decisions.

  • This study investigated the surrogacy relationships between marine physical variables and the distribution of marine infauna species and measures of benthic biodiversity across the continental shelf offshore from Ningaloo Reef, Western Australia. The three study areas are located at Mandu Creek, Point Cloates and Gnaraloo covering a combined area of 1038 km2. The physical variables include morphometric variables derived from multibeam bathymetry data, texture measures derived from acoustic backscatter data, sediment variables from 265 samples, seabed exposure estimates and geomorphic feature types. Together, these data were used to model total abundance and species richness, and 10 individual infauna species using a Random Forest Decision Tree. The key findings are: - Generally, the surrogacy relationships are stronger at Gnaraloo than at Mandu and Point Cloates. This is likely due to the fact that Gnaraloo is dominated by soft sediment and Point Cloates and Mandu have larger areas of hard substrates which preclude infauna. - At Gnaraloo, the most important physical surrogates were the sediment variables. - At Point Cloates, the most important physical surrogates were the bathymetry-derived parameters including seabed heterogeneity, morphological position, and slope. - At Mandu, the most important physical surrogates were the mixture of the bathymetry- derived parameters including morphological position and geomorphic features, and the sediment variables including gravel content, and backscatter derived texture measures. - Seabed exposure was not a useful physical surrogate for the infauna distribution in this study. The likely reasons are not clear, but could be a function of the grid resolution (150 m) of the hydrodynamic model used to generate the exposure variable relative to infaunal patterns; or that the infauna species are protected by the sediment from seabed disturbance.

  • This special issue of Continental Shelf Research presents 13 research papers that contain the latest results in the field of benthic marine environment mapping and seabed characterisation. A total of 10 papers in this special issue were presented as papers and posters at GeoHab conferences in 2007 (Noumea, New Caledonia), 2008 (Sitka, Alaska) and 2009 (Trondheim, Norway). The annual GeoHab conference provides a forum in which marine physical and biological scientists, managers, policy makers, and industry representatives can convene to engage in discussions regarding mapping and characterising the seabed. The papers contained in this special issue build on the work published in Greene and Todd (2005): Mapping the Seafloor for Habitat Characterization, a special publication of the Geological Association of Canada.

  • Physical sedimentological processes such as the mobilisation and transport of shelf sediments during extreme storm events give rise to disturbances that characterise many shelf ecosystems. The intermediate disturbance hypothesis predicts that biodiversity is controlled by the frequency of disturbance events, their spatial extent and the amount of time required for ecological succession. A review of available literature suggests that periods of ecological succession in shelf environments range from 1 to over 10 years. Physical sedimentological processes operating on continental shelves having this same return frequency include synoptic storms, eddies shed from intruding ocean currents and extreme storm events (cyclones, typhoons and hurricanes). Modelling studies that characterise the Australian continental shelf in terms of bed stress due to tides, waves and ocean currents were used here to create a map of ecological disturbance, defined as occurring when the Shield's parameter exceeds a threshold of 0.25. We also define a dimensionless ecological disturbance ratio (ED) as the rate of ecological succession divided by the recurrence interval of disturbance events. The results illustrate that on the outer part of Australia's southern, wave-dominated shelf the mean number of days between threshold events that the Shield's parameter exceeds 0.25 is several hundred days.

  • A number of terms used in this book are derived from the fields of biogeography and benthic ecology and these are defined in the glossary; the reader is also referred to the works cited at the end of this chapter for further information. Many of the case studies presented in this book refer to habitat classification schemes that have been developed based on principles of biogeography and ecology. For these reasons a brief overview is provided here to explain the concepts of biodiversity, biogeography and benthic ecology that are most relevant to habitat mapping and classification. Of particular relevance is that these concepts underpin classification schemes employed by GeoHab scientists in mapping habitats and other bioregions. A selection of published schemes, from both deep and shallow water environments, are reviewed and their similarities and differences are examined.

  • Field and supplementary environmental data for the Marine Biodiversity Hub Description: The directory contains the following datasets. 1. Multibeam acoustic data (both backscatter and bathymetry) for three field areas: Jervis Bay, Carnarvon Shelf, and Southern Tasmanian Shelf. 2. Marine environmental data at the Australian continental scale. 3. Side scan data for three regions: Fitzroy, Jervis Bay and Keppel Bay. 4. CARS and Ocean Color datasets obtained from CSIRO. 5. AUV data for the Tasmanian survey (October 2008). These datasets were collected from various field surveys and project partners for the research of Marine Biodiversity Hub. Please contact the CERF project team for further information.