Antarctic data
Type of resources
Keywords
Publication year
Scale
Topics
-
The Rayner Complex of East Antarctica is exposed between 45??80?E in the Enderby Land through Princes Elizabeth Land sector of East Antarctica. It is known to correlate with parts of present day India and to have been deformed and metamorphosed at high grades in the earliest Neoproterozoic (990-900 Ma). The age and origin of the protolith rocks of the Rayner Complex however remains largely unknown, as does the tectonic setting in which these rocks formed. New age data collected from the northern Prince Charles Mountains (eastern Rayner Complex), demonstrate that the pre-orogenic rocks from this region consist of: (1) volcanogenic and terrigenous sediments deposited between 1400 Ma and 1020 Ma in a magmatically active basin characterised by limited input from cratonic sources and, (2) probable syn-sedimentary granitoids dated to 1150 Ma. Our data confirm the continuity of the Rayner Complex into Prydz Bay, a region that preserves a remarkably similar geologic history but which is often differentiated from the Rayner Complex on the basis of a higher grade early Cambrian (~520 Ma) overprint. On the basis of our data we further conclude that the Rayner Complex protoliths likely in formed in a back-arc system that existed along the margin of the pre-Gondwana Indian craton. Anticlockwise P-T paths and high-T, low-P metamorphism associated with the inversion of the Rayner back-arc (990-900 Ma) suggest this event resulted from the accretion of a number of independent microplates, rather than continent-continent collision.
-
To study the seafloor morpholofy on the George V land shelf, East Antarctica, over 2000 kilometres of high-frequency echo-sounder data were collected between February and March 2000. The acoustic facies are explained in terms of glacial and oceanographic influences on the shelf since the Last Glacial Maximum.
-
Life in icy waters: A geoscience perspective of life on the Antarctic seafloor
-
In 2007-08 scientists from Australia, Japan and France set out to survey the marine life and habitats in the region adjacent to Terre Adelie and George V Land in East Antarctica (Australian Antarctic Magazine 14: 2-13, 2008). The Collaborative East Antarctic Marine Census (CEAMARC) - part of Australia's contribution to the International Polar Year - aimed to understand the processes that have lead to the evolution and survival of marine life existing in the region today, so that scientists can predict how these organisms may respond to future climate-related changes in their environment. Scientists involved in the census are now finalising the collation and analysis of data and the following pages (13-18) provide an insight into some of the results. The team aims to publish its findings as a series of papers in a special volume of a scientific journal in late 2010.
-
Geophysical data were acquired by Australia and Japan from 1994-2002 on the deep-water continental margin offshore from Queen Mary Land, East Antarctica in the general locality of Bruce Rise. This paper presents a regional interpretation of these data and outlines the tectonic history.
-
The late Quaternary ice sheet/ice shelf extent in the George V Basin (East Antarctica) has been reconstructed through analyses of Chirp sub-bottom profiles, integrated with multi-channel seismic data and sediment cores. Four glacial facies, related to the advance and retreat history of the glaciated margin, have been distinguished: Facies 1 represents outcrop of crystalline and sedimentary rocks along the steep inner shelf and comprises canyons once carved by glaciers; Facies 2 represents moraines and morainal banks and ridges with a depositional origin along the middle-inner shelf; Facies 3 represents glacial flutes along the middle-outer shelf; Facies 4 is related to ice-keel turbation at water depths <500 m along the outer shelf. A sediment drift deposit, located in the NW sector of the study area, partly overlies facies 2 and 3 and its ground-truthing provides clues to understanding their age. We have distinguished: a) an undisturbed sediment drift deposit at water depth >775 m, with drape/sheet and mound characters and numerous undisturbed sub-bottom sub-parallel reflectors (Facies MD1); b) a fluted sediment drift deposit at water depth <775 m, showing disrupted reflectors and a hummocky upper surface (Facies MD2). Radiocarbon ages of sediment cores indicate that the glacial advance producing facies MD2 corresponds to the Last Glacial Maximum (LGM) and that during the LGM the ice shelf was floating over the deep sector of the basin, leaving the sediment drift deposit undisturbed at major depths (Facies MD1). This observation further implies that: a) glacial facies underneath the sediment drift were the result of a grounding event older than the LGM, b) this sector of the East Antarctic fringe was sensitive to sea-level rise at the end of the LGM; thus potentially contributing to meltwater discharge during the last deglaciation.
-
The sediments deposited beneath the floating ice shelves around the Antarctic margin provide important clues regarding the nature of sub-ice shelf circulation and the imprint of ice sheet dynamics and marine incursions on the sedimentary record. Understanding the nature of sedimentary deposits beneath ice shelves is important for reconstructing the icesheet history from shelf sediments. In addition, down core records from beneath ice shelves can be used to understand the past dynamics of the ice sheet. Six sediment cores have been collected from beneath the Amery Ice Shelf in East Antarctica, at distances from the ice edge of between 100 and 300 km. The sediment cores collected beneath this ice shelf provide a record of deglaciation on the Prydz Bay shelf following the last glaciation. Diatoms and other microfossils preserved in the cores reveal the occurrence and strength of marine incursions beneath the ice shelf, and indicate the varying marine influence between regions of the sub-ice shelf environment. Variations in diatom species also reveal changes in sea ice conditions in Prydz Bay during the deglaciation. Grain size analysis indicates the varying proximity to the grounding line through the deglaciation, and the timing of ice sheet retreat across the shelf based on 14C dating of the cores. Two of the cores contain evidence of cross-bedding towards the base of the core. These cross-beds most likely reflect tidal pumping at the base of the ice shelf at a time when these sites were close to the grounding line of the Lambert Glacier.
-
Less than one year after the spectacular calving of the Mertz Glacier tongue, scientists were collecting the first ever images of the seafloor where the glacier tongue once sat.
-
Within the general trend of post-Eocene cooling, the largest and oldest outlet of the East Antarctic Ice Sheet underwent a change from ice-cliff to ice-stream and/or ice-shelf dynamics, with an associated switch from line-source to fan sedimentation. Available geological data reveal little about the causes of these changes in ice dynamics during the Miocene Epoch, or the subsequent effects on Pliocene-Pleistocene ice-sheet history. Ice-sheet numerical modeling reveals that bed morphology was probably responsible for driving changes in both ice-sheet extent and dynamics in the Lambert-Amery system at Prydz Bay. The modeling shows how the topography and bathymetry of the Lambert graben and Prydz Bay control ice-sheet extent and flow. The changes in bathymetric volume required for shelf-edge glaciation correlate well with the Prydz Channel fan sedimentation history. This suggests a negative feedback between erosion and glaciation, whereby the current graben is overdeepened to such an extent that shelf-edge glaciation is now not possible, even if a Last Glacial Maximum environment recurs. We conclude that the erosional history of the Lambert graben and Prydz Bay in combination with the uplift histories of the surrounding mountains are responsible for the evolution of this section of the East Antarctic Ice Sheet, once the necessary initial climatic conditions for glaciation were achieved at the start of the Oligocene Epoch.
-
Frank Stillwell was a member of Douglas Mawson's 1911-1914 expedition to Cape Denison, Commonwealth Bay, Antarctica. His 1912 diary is being edited for publication. The editor has asked for a text box to be included in the publication that describes aspects of the geomagnetism activities that formed part of the expedition's scientific program.