From 1 - 10 / 198
  • As part of Geoscience Australia's analysis of the Capel-Faust basins this report summarises the construction methodology and the resulting geological and prospectivity implications of the Capel-Faust 3D geological model. The Capel and Faust basins are located over the northern part of the Lord Howe Rise, a large offshore frontier region composed of a number of rift basins with unknown petroleum prospectivity. Geoscience Australia has been undergoing a program of data acquisition in this area over a number of years, yet most dataset coverage remains regional with little well control. Given the diversity of acquired data, the comparative sparseness of coverage (despite the new data acquisition) and the structural complexity of basins, effective data integration and analysis methods were essential in the Capel-Faust region. By using the 3D visualisation and modelling environment provided by GOCAD, the diverse datasets were captured, processed and interpreted to create an integrated basin model that enabled key geological and prospectivity questions to be answered.

  • The Geoscience Australia World Wind Suite is a suite of tools built around the NASA World Wind Java SDK including the World Wind Data Viewer and Animator tools. The tool suite has been released as open source under the Apache 2.0 license and is available through Github (http://www.ga.gov.au/ga-m3dv/ga-worldwind-suite). Individual products in the suite are catalogued individually under IDs 69165 and 73044.

  • We present a new method for the inversion of airborne gamma-ray spectrometric line data to a regular grid of radioelement concentration estimates on the ground. The method incorporates the height of the aircraft, the 3D terrain within the field of view of the spectrometer, the directional sensitivity of rectangular detectors, and a source model comprising vertical rectangular prisms with the same horizontal dimensions as the required grid cell size. The top of each prism is a plane surface derived from a best-fit plane to the digital elevation model of the earth's surface within each grid cell area. The method is a significant improvement on current methods, and gives superior interpolation between flight lines. It also eliminates terrain effects that would normally remain in the data with the use of conventional gridding methods.

  • Three seismic lines (10GA-CP1, 10GA-CP2 and 10GA-CP3), which cross north to south across the Capricorn Orogen of Western Australia, have recently been collected by Geoscience Australia, ANSIR and the Geological Survey of Western Australia. The interpretation of these seismic lines is aimed at providing insight into the geologic structure of the Capricorn Orogen and to explore the relationship between the Pilbara and Yilgarn cratons. To aid in further interpretation and to add value to the seismic data an analysis of the available potential field data (gravity and magnetics) has also been undertaken. A range of geophysical data analysis techniques have been applied and include: multi-scale edge detection (worms), forward modelling and 3D inversion. By applying all three analysis techniques to the potential-field data major trends, contrasting properties and regional blocks relating to the subsurface geology have been determined, in turn, allowing for a detailed comparison with the seismic interpretation. Note that all results referred to in this abstract are preliminary and subject to change.

  • The Capel and Faust basins are located in a frontier part of offshore eastern Australia, about 800 km east of Brisbane in 1300-2500 m of water. Little is known of the basin structures and geological history of this area, which is a continental fragment separated from Australia during the Cretaceous rifting of the Tasman Sea. In 2007 Geoscience Australia acquired 6000km of 2D seismic reflection and refraction data, gravity and magnetics, to begin an assessment of the petroleum prospectivity of these basins. A workflow has been developed to assist the seismic interpreter with feedback from a coherent 3D geology model that is used to predict the gravity response of the basins. This response is harmonized with the observed gravity and modified geological horizons are then returned to the seismic interpreter. An interface between Geoframe and Geomodeller has been optimized to make it very easy to do many iterations of this process, as suits the changing needs of the interpretation team.

  • Extended abstract version of short abstract accepted for conference presentation GEOCAT# 73701

  • Broken Hill Managed Aquifer recharge Projects 3D models and Fly-through

  • This is a 3 minute movie (with production music), to be played in the background during the October 28th 2010 Geoscience Australia Parlimentary Breakfast. The video shows a wide range of the types of activities that GA is involved in. These images include GA people doing GA activities as well as some of the results of offshore surveys; continental mapping; eath monitoring etc. The movie will be played as a background before and after GA's CEO (Chris Pigram) presentation.

  • Abstract. Severe wind is one of the major natural hazards in Australia. The component contributors to economic loss in Australia with regards to severe wind are tropical cyclones, thunderstorms and sub-tropical (synoptic) storms. Geoscience Australia's Risk and Impact Analysis Group (RIAG) is developing mathematical models to study a number of natural hazards including wind hazard. This paper discusses wind hazard under current and future climate using RIAG's synoptic wind hazard model. This model can be used in non-cyclonic regions of Australia (Region A in the Australian-New Zealand Wind Loading Standard; AS/NZS 1170.2:2002) where the wind hazard is dominated by synoptic and thunderstorm gust winds.

  • <div>These videos provide tutorials on how to use the Geoscience Australia Data portal in the classroom. They include a guide for basic navigation, how to load 2D map data sets (elevation, surface geology and critical minerals) as well as accessing a 3D data model (earthquakes).&nbsp;Additionally, they demonstrate how to directly compare multiple data and how to share collated data through a shareable link.</div><div>Videos included:</div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Introduction to using the Geoscience Australia Data Portal (2:15)</div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;How to access elevation, surface geology and critical minerals data in the Geoscience Australia Data Portal (4:26)</div><div>- How to view the global distribution of earthquakes using the Geoscience Australia Data Portal (2:51)</div><div><br></div><div>These videos are suitable for use by secondary students and adults.</div>