From 1 - 10 / 80
  • Geoscience Australia undertook seabed mapping surveys in the eastern Bonaparte Gulf in 2009/2010 to deliver integrated information relevant to marine biodiversity conservation and offshore infrastructure development. The survey objectives were to characterise the physical, chemical and biological properties of the seabed, document potential geohazards and identify unique or sensitive benthic habitats. Different clustering methods were applied to a 124 sample dataset comprising 74 physical and chemical variables which convey important baseline information about sediment sources, carbon reactivity/redox and sedimentary environments. Results of the UPGMA clustering method were interpreted due to the high cophenetic correlation (0.82), and these clusters discriminated infauna better than clusters based on geomorphology. Major geochemical dimensions evident amongst clusters included grain-size and a cross-shelf transition from Mn and As enrichment (inner shelf) to P enrichment (outer-shelf). Higher P was due to enhanced authigenic-P accumulation. Sponge/gorgonian occurrences were constrained by low Nd/Sr (pointing to a diminishing terrestrial source) and relatively high -15N, and subsurface seepage was shown to enhance the 'terrestrial' (e.g. rare-earth element and Si) signature in outer-shelf sediments. Sponge-dominated shallow bank/terrace clusters with abundant reactive organic matter differentiated on the basis of Si-Al relations (and redox). These habitats shed materials to peripheral Gorgonian-dominated scree environments which had surface-area normalised TOC concentrations that were elevated over usual continental shelf ranges. Trichodesmium were identified as an important source of carbon to inner-shelf plains. Pair-wise ANOSIM results for infauna are brought together in a summary model which highlights the influence of the clusters on benthic biodiversity.

  • Physical and biological characteristics of benthic communities are analysed from underwater video footage collected across the George V Shelf during the 2007/2008 CEAMARC voyage. Benthic habitats are strongly structured by physical processes operating over a range of temporal and spatial scales. Iceberg scouring recurs over timescales of years to centuries along shallower parts of the shelf, creating communities in various stages of maturity and recolonisation. Upwelling of modified circumpolar deep water (MCDW) onto the outer shelf and cross-shelf flow of high salinity shelf water (HSSW) create spatial contrasts in nutrient and sediment supply, which are largely reflected in the distribution of deposit and filter feeding communities. Long term cycles in the advance and retreat of icesheets (over millennial scales) and subsequent focussing of sediments in troughs such as the Mertz Drift create patches of consolidated and soft sediments, which also provide distinct habitats for colonisation by different biota. These physical processes of iceberg scouring, current regimes and depositional environments, in addition to water depth, are important factors in the structure of benthic communities across the George V Shelf. The modern shelf communities mapped in this study largely represent colonisation over the past 8,000-12,000 years, following retreat of the icesheet and glaciers at the end of the last glaciation. Recolonisation on this shelf may have occurred from two sources: deep-sea environments and possible shelf refugia on the Mertz and Adélie Banks. However, any open shelf area would have been subject to intense iceberg scouring. Understanding the timescales over which shelf communities have evolved and the physical factors which shape them will allow better prediction of the distribution of Antarctic shelf communities and their vulnerability to change. This knowledge can aid better management regimes for the Antarctic margin.

  • Geoscience Australia carried out a marine survey on Carnarvon shelf (WA) in 2008 (SOL4769) to map seabed bathymetry and characterise benthic environments through co-located sampling of surface sediments and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave-generated currents. Data and samples were acquired using the Australian Institute of Marine Science (AIMS) Research Vessel Solander. Bathymetric mapping, sampling and video transects were completed in three survey areas that extended seaward from Ningaloo Reef to the shelf edge, including: Mandu Creek (80 sq km); Point Cloates (281 sq km), and; Gnaraloo (321 sq km). Additional bathymetric mapping (but no sampling or video) was completed between Mandu creek and Point Cloates, covering 277 sq km and north of Mandu Creek, covering 79 sq km. Two oceanographic moorings were deployed in the Point Cloates survey area. The survey also mapped and sampled an area to the northeast of the Muiron Islands covering 52 sq km. TheGA0308_Carnarvon_SOL4976 folder contains video footage and still images. The MS databse, the Excel files are video characterisation datasets: Carnarvon_video data (export).mdb; all_substrata_tx.xls (transect level); all_substrata_patch.xls (patch level); all_benthos_tx.xls (transect level); all_benthos_patch.xls (patch level); Carnarvon_QAQC_VIDEOlog.doc (QAQC document); Attribute_metadata.xls (attribute definition). Underwater towed-video footage abd still images represent the raw data. Video characterisation datasets include percent cover of substrata and benthic taxa characterised at two spatial scales: transect scale (mean values per transect) and patch scale (mean values for each patch type within a transect).

  • Physical and biological characteristics of benthic communities on the George V Shelf have been analysed from underwater camera footage collecting during Aurora Australis voyages in 2007/08 and 2010/11. The 2007/08 data revealed a high degree of variability in the benthic communities across the shelf, with the benthic habitats strongly structured by physical processes. Iceberg scouring recurs over timescales of years to centuries along shallower parts of this shelf, creating communities in various stages of maturity and recolonisation. Upwelling of modified circumpolar deep water (MCDW) onto the outer shelf and cross-shelf flow of high salinity shelf water (HSSW) create spatial contrasts in nutrient and sediment supply, which are largely reflected in the distribution of deposit and filter feeding communities. Long term cycles in the advance and retreat of icesheets (over millennial scales) and subsequent focussing of sediments in troughs such as the Mertz Drift create patches of consolidated and soft sediments, which also provide distinct habitats for colonisation by different biota. These interacting physical processes of iceberg scouring, current regimes and depositional environments, in addition to water depth, are important factors in the structure of benthic communities across the George V Shelf. In February 2010, iceberg B09B collided with the Mertz Glacier Tongue, removing about 80% or 78km from the protruding tongue. This event provided a rare opportunity to access a region previously covered by the glacier tongue, as well as regions to the east where dense fast ice has built up over decades, restricting access. The 2010/11 voyage imaged 3 stations which were previously beneath the floating tongue, as well as 9 stations covered by multi-year and annual fast ice since the mid 1970s.

  • This chapter presents a broad synthesis and overview based on the 57 case studies included in Part 2 of this book, and on questionnaires completed by the authors. The case studies covered areas of seafloor ranging from 0.15 to over 1,000,000 km2 (average of 26,600 km2) and a broad range of geomorphic feature types. The mean depths of the study areas ranged from 8 to 2,375 m, with about half of the studies on the shelf (depth <120 m) and half on the slope and at greater depths. Mapping resolution ranged from 0.1 to 170 m (mean of 13 m). There is a relatively equal distribution of studies among the four naturalness categories: near-pristine (n=17), largely unmodified (n = 16), modified (n=13) and extensively modified (n=10). In terms of threats to habitats, most authors identified fishing (n=46) as the most significant threat, followed by pollution (n=12), oil and gas development (n=7) and aggregate mining (n=7). Anthropogenic climate change was viewed as an immediate threat to benthic habitats by only three authors (n=3). Water depth was found to be the most useful surrogate for benthic communities in the most studies (n=17), followed by substrate/sediment type (n=14), acoustic backscatter (n=12), wave-current exposure (n=10), grain size (n=10), seabed rugosity (n=9) and BPI/TPI (n=8). Water properties (temperature, salinity) and seabed slope are less useful surrogates. A range of analytical methods were used to identify surrogates, with ARC GIS being by far the most popular method (23 out of 44 studies that specified a methodology).

  • Geoscience Australia carried out marine surveys in south-east Tasmania in 2008 and 2009 (GA0315) to map seabed bathymetry and characterise benthic environments through observation of habitats using underwater towed video. Data was acquired using the Tasmania Aquaculture and Fisheries Institute (TAFI) Research Vessel Challenger. Bathymetric mapping was undertaken in seven survey areas, including: Freycinet Pensinula (83 sq km, east coast and shelf); Tasman Peninsula (117 sq km, east coast and shelf); Port Arthur and adjacent open coast (17 sq km); The Friars (41 sq km, south of Bruny Island); lower Huon River estuary (39 sq km); D Entrecastreaux Channel (7 sq km, at Tinderbox north of Bruny Island), and; Maria Island (3 sq km, western side). Video characterisations of the seabed concentrated on areas of bedrock reef and adjacent seabed in all mapped areas, except for D Entrecastreaux Channel and Maria Island. The GA0315_SETasi folder contains video footage; the excel file is the video characterisation data. Underwater video footage represents raw data. Video characterisation dataset include percent cover of substate.

  • The Petrel Sub-basin Marine Survey GA-0335 (SOL5463) was undertaken by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This dataset contains identifications of animals collected from 21 Smith-McIntyre grabs deployed during GA-334. Biological specimens were collected from Smith-McIntyre grabs. Sediment was elutriated for ~ 5 minutes over a 500um sieve. Retained sediments and animals were then preserved in 70% ethanol for later laboratory sorting and identification (see 'lineage'). The dataset is current as of November 2012, but will be updated as taxonomic experts contribute. Stations are named XXGRYY where XX indicates the station number, GR indicates Smith-Mac grab, and YY indicates the sequence of grabs deployed (i.e. the YYth grab on the entire survey).

  • Seascapes describing a layer of ecologically meaningful biophysical variable that spatially represent potential seabed habitats have been derived for the Australian margin and adjacent seabed in a new analysis of existing biophysical data. A total of 13 seascapes were derived for the continental shelf and nine seascapes for regions beyond the continental shelf using the unsupervised ISOCLASS classification in the software package ERMapper. The ecological significance of the seascapes is assessed at the national, regional and local scale using existing biological data. Options and avenues for future development are also described.

  • Cold seeps and hydrothermal vents can be detected by a number of oceanographic and geophysical techniques as well as the recovery of characteristic organisms. While the definitive identification of a seep or vent and its accompanying fauna is seldom unequivocal without significant effort. We suggest an approach to identifying associated VMEs in the CCAMLR region that uses the results of scientific surveys to identify confirmed features while documenting a series of criteria that can be used by fishing vessels to reduce the accidental disturbance of seep communities.

  • Understanding and predicting the bio-physical relationships between seabed habitats, biological assemblages, and marine biodiversity is critical to managing marine systems. Species distributions and assemblage structure of infauna were examined on the oceanic shelf surrounding Lord Howe Island (LHI) relative to seabed complexity within and adjacent to a newly discovered relict coral reef. High resolution multibeam sonar was used to map the shelf, and identified an extensive relict reef in the middle of the shelf, which separated an inner drowned lagoon from the outer shelf. Shelf sediments and infauna were sampled using a Smith McIntyre grab. The three geomorphic zones (drowned lagoon, relict reef and outer shelf) were strong predictors or surrogates of the physical structure and sediment composition of the LHI shelf and its infaunal assemblage. Infaunal assemblages were highly diverse with many new and endemic species recorded. Each zone supported characteristic assemblages and feeding guilds, with higher abundance and diversity offshore.