Victoria
Type of resources
Keywords
Publication year
Topics
-
This project consists of data that has been reprocessed by RPS and AAM for the purpose of creating an improved Victorian coastal DEM including contours based on the original data acquired in 2007. The purpose of this project is to reclassify the original level 2 classification LiDAR data into level 3 for input to a higher accuracy ICSM Level 3 classification (Level 3 DEM). LiDAR (Light Detection and Ranging) is an airborne remote sensing technique for rapid collection of terrain data. The sensor used for this LiDAR project collected XYZ and Intensity data for first and last return by bouncing a pulse from the aircraft to the surface that enables the height and intensity values to be calculated. From the raw LiDAR data, a suite of elevation products was generated including DEM and Contours. Project Products: DEM, Contours, raw LiDAR.
-
This project consists of data that has been reprocessed by RPS and AAM for the purpose of creating an improved Victorian coastal DEM including contours based on the original data acquired in 2007. The purpose of this project is to reclassify the original level 2 classification LiDAR data into level 3 for input to a higher accuracy ICSM Level 3 classification (Level 3 DEM). LiDAR (Light Detection and Ranging) is an airborne remote sensing technique for rapid collection of terrain data. The sensor used for this LiDAR project collected XYZ and Intensity data for first and last return by bouncing a pulse from the aircraft to the surface that enables the height and intensity values to be calculated. From the raw LiDAR data, a suite of elevation products was generated including DEM and Contours. Project Products: DEM, Contours, raw LiDAR.
-
This project consists of data that has been reprocessed by RPS and AAM for the purpose of creating an improved Victorian coastal DEM including contours based on the original data acquired in 2007. The purpose of this project is to reclassify the original level 2 classification LiDAR data into level 3 for input to a higher accuracy ICSM Level 3 classification (Level 3 DEM). LiDAR (Light Detection and Ranging) is an airborne remote sensing technique for rapid collection of terrain data. The sensor used for this LiDAR project collected XYZ and Intensity data for first and last return by bouncing a pulse from the aircraft to the surface that enables the height and intensity values to be calculated. From the raw LiDAR data, a suite of elevation products was generated including DEM and Contours. Project Products: DEM, Contours, raw LiDAR.
-
<div>This data package contains interpretations of airborne electromagnetic (AEM) conductivity sections in the Exploring for the Future (EFTF) program’s Eastern Resources Corridor (ERC) study area, in south eastern Australia. Conductivity sections from 3 AEM surveys were interpreted to provide a continuous interpretation across the study area – the EFTF AusAEM ERC (Ley-Cooper, 2021), the Frome Embayment TEMPEST (Costelloe et al., 2012) and the MinEx CRC Mundi (Brodie, 2021) AEM surveys. Selected lines from the Frome Embayment TEMPEST and MinEx CRC Mundi surveys were chosen for interpretation to align with the 20 km line-spaced EFTF AusAEM ERC survey (Figure 1).</div><div>The aim of this study was to interpret the AEM conductivity sections to develop a regional understanding of the near-surface stratigraphy and structural architecture. To ensure that the interpretations took into account the local geological features, the AEM conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This approach provides a near-surface fundamental regional geological framework to support more detailed investigations. </div><div>This study interpreted between the ground surface and 500 m depth along almost 30,000 line kilometres of nominally 20 km line-spaced AEM conductivity sections, across an area of approximately 550,000 km2. These interpretations delineate the geo-electrical features that correspond to major chronostratigraphic boundaries, and capture detailed stratigraphic information associated with these boundaries. These interpretations produced approximately 170,000 depth estimate points or approximately 9,100 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div>Results from these interpretations provided support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The interpretations have applications in a wide range of disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. It is anticipated that these interpretations will benefit government, industry and academia with interest in the geology of the ERC region.</div>
-
This project consists of data that has been reprocessed by RPS and AAM for the purpose of creating an improved Victorian coastal DEM including contours based on the original data acquired in 2007. The purpose of this project is to reclassify the original level 2 classification LiDAR data into level 3 for input to a higher accuracy ICSM Level 3 classification (Level 3 DEM). LiDAR (Light Detection and Ranging) is an airborne remote sensing technique for rapid collection of terrain data. The sensor used for this LiDAR project collected XYZ and Intensity data for first and last return by bouncing a pulse from the aircraft to the surface that enables the height and intensity values to be calculated. From the raw LiDAR data, a suite of elevation products was generated including DEM and Contours. Project Products: DEM, Contours, raw LiDAR.
-
This project consists of data that has been reprocessed by RPS and AAM for the purpose of creating an improved Victorian coastal DEM including contours based on the original data acquired in 2007. The purpose of this project is to reclassify the original level 2 classification LiDAR data into level 3 for input to a higher accuracy ICSM Level 3 classification (Level 3 DEM). LiDAR (Light Detection and Ranging) is an airborne remote sensing technique for rapid collection of terrain data. The sensor used for this LiDAR project collected XYZ and Intensity data for first and last return by bouncing a pulse from the aircraft to the surface that enables the height and intensity values to be calculated. From the raw LiDAR data, a suite of elevation products was generated including DEM and Contours. Project Products: DEM, Contours, raw LiDAR.
-
The Pre-Cenozoic Geology of South Australia, New South Wales and Victoria removes Cenozoic geology. It is largely based on (1) the 1:1,000,000 Surface Geology by Geoscience Australia (2012) for New South Wales; (2) the Victoria seamless geology (2014); and (3) solid geology layers of South Australia by the Geological Survey of South Australia (2016), plus interpretation in GA of potential filed geophysical datasets, particularly magnetic data. The South Australia solid geology layers available on SARIG were used for Archaean to Ordovician geology of the state. Post-Ordovician geology of South Australia were interpreted in GA using magnetic data. The 1:1,000,000 surface geology map of the Mount Painter Region by S.B. Hore (2015) was also used. Solid geology was produced with the aid of interpretation of magnetic data for that region. For the Murray Basin and surrounding areas drill hole data were used to determine the geology under cover. Because extents of drill hole intercepted geology are not know in most cases. Such geology are shown as tiny circular polygons. The author thanks a number of state and GA geologists for their inputs at various stages of the project, particularly those who reviewed the data.
-
This Record presents new U Pb geochronological data, obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP), from nine samples of sedimentary rocks collected from the Paleo- to Neoproterozoic Birrindudu and Victoria Basins, and underlying basement from the Victoria River catchment region, northwest Northern Territory. The newly acquired U–Pb SHRIMP data are discussed and integrated with existing detrital zircon geochronology to assist in the determination of maximum depositional ages and sedimentary provenance during the evolution of the Birrindudu and Victoria Basins, and contribute to lithostratigraphic correlations with other Proterozoic basins across northern Australia (e.g., the greater McArthur Basin and the Centralian Superbasin, Walter et al., 1995; Munson et al., 2013; Carson, 2013; Munson, 2016).
-
Geoscience Australia’s Exploring for the Future (EFTF) program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. Further detail is available at http://www.ga.gov.au/eftf. The National Groundwater Systems (NGS) project, is part of the Australian Government’s Exploring for the Future (EFTF) program, led by Geoscience Australia (https://www.eftf.ga.gov.au/national-groundwater-systems), to improve understanding of Australia’s groundwater resources to better support responsible groundwater management and secure groundwater resources into the future. The project is developing new national data coverages to constrain groundwater systems, develop a new map of Australian groundwater systems and improve data standards and workflows of groundwater assessment to populate a consistent data discovery tool and web-based mapping portal to visualise, analyse and download hydrogeological information. While our hydrogeological conceptual understanding of Australian groundwater systems continues to grow in each State and Territory jurisdiction, in addition to legacy data and knowledge from the 1970s, new information provided by recent studies in various parts of Australia highlights the level of geological complexity and spatial variability in stratigraphic and hydrostratigraphic units across the continent. We recognise the need to standardise individual datasets, such as the location and elevation of boreholes recorded in different datasets from various sources, as well as the depth and nomenclature variations of stratigraphic picks interpreted across jurisdictions to map such geological complexity in a consistent, continent-wide stratigraphic framework that can support effective long-term management of water resources and integrated resource assessments. This stratigraphic units data compilation at a continental scale forms a single point of truth for basic borehole data including 47 data sources with 1 802 798 formation picks filtered to 1 001 851 unique preferred records from 171 367 boreholes. This data compilation provides a framework to interpret various borehole datasets consistently, and can then be used in a 3D domain as an input to improve the 3D aquifer geometry and the lateral variation and connectivity in hydrostratigraphic units across Australia. The reliability of each data source is weighted to use preferentially the most confident interpretation. Stratigraphic units are standardised to the Australian Stratigraphic Units Database (ASUD) nomenclature (https://asud.ga.gov.au/search-stratigraphic-units) and assigned the corresponding ASUD code to update the information more efficiently when needed. This dataset will need to be updated as information grows and is being revised over time. This dataset provides: 1. ABSUC_v1 Australian stratigraphic unit compilation dataset (ABSUC) 2. ABSUC_v1_TOP A subset of preferred top picks from the ABSUC_v1 dataset 3. ABSUC_v1_BASE A subset of preferred base picks from the ABSUC_v1 dataset 4. ABSUC_BOREHOLE_v1 ABSUC Borehole collar dataset 5. ASUD_2023 A subset of the Australia Stratigraphic Units Database (ASUD) This consistent stratigraphic units compilation has been used to refine the Great Artesian Basin geological and hydrogeological surfaces in this region and will support the mapping of other regional groundwater systems and other resources across the continent. It can also be used to map regional geology consistently for integrated resource assessments.
-
This project consists of data that has been reprocessed by RPS and AAM for the purpose of creating an improved Victorian coastal DEM including contours based on the original data acquired in 2007. The purpose of this project is to reclassify the original level 2 classification LiDAR data into level 3 for input to a higher accuracy ICSM Level 3 classification (Level 3 DEM). LiDAR (Light Detection and Ranging) is an airborne remote sensing technique for rapid collection of terrain data. The sensor used for this LiDAR project collected XYZ and Intensity data for first and last return by bouncing a pulse from the aircraft to the surface that enables the height and intensity values to be calculated. From the raw LiDAR data, a suite of elevation products was generated including DEM and Contours. Project Products: DEM, Contours, raw LiDAR.