From 1 - 10 / 27
  • <div>The Exploring for the Future program is a world leading program, delivering public geoscientific data and information required to empower decision-makers and attract future investment in resource exploration and development. Geoscience Australia engaged Alluvium Consulting Australia to quantify the impact and value of groundwater activities and outputs to the quadruple bottom line through an evaluation of 2 case studies, namely: • National Hydrogeological Mapping • The Southern Stuart Corridor project. This involved understanding the impact pathways for these case studies and the collection of data to be used in a cost benefit analysis. The work sought to provide feedback to Geoscience Australia, stakeholder groups and the broader community on the value of Geoscience Australia’s groundwater activities. The case study evaluations were facilitated by a series of specific questions, which were developed to guide data collection and the building of a knowledge base around the impact and value of the work in each case study and associated outputs. The questions broadly fell under the following categories: 1. Uptake and Usage 2. Impact 3. Benefit These evaluations were framed around the program impact pathway developed for each case study. This is a description of how inputs are used to deliver activities, which in turn result in outcomes and impacts (changes) for stakeholders, including the environment. The primary means of data collection to help answer the key evaluation questions was through online workshops and interviews with key stakeholders for each case study. These were undertaken between March 10 and March 24, 2023. In these workshops and interviews, representatives from industry, community and government agencies were asked if they could identify instances where case study program outputs were used for particular purposes, such as prioritising research or investment, advising Members of Parliament, or education and training. These examples were then explored further to understand what outcomes and benefits were derived from the use of the case study outputs, and how critical were the case study outputs to achieving those outcomes and benefits</div>

  • The Exploring for the Future program Showcase 2024 was held on 13-16 August 2024. Day 3 - 15th August talks included: <b>Session 1 – Hydrogen opportunities across Australia</b> <a href="https://youtu.be/pA9ft3-7BtU?si=V0-ccAmHHIYJIZAo">Hydrogen storage opportunities and the role of depleted gas fields</a> - Dr Eric Tenthorey <a href="https://youtu.be/MJFhP57nnd0?si=ECO7OFTCak78Gn1M">The Green Steel Economic Fairways Mapper</a> - Dr Marcus Haynes <a href="https://youtu.be/M95FOQMRC7o?si=FyP7CuDEL0HEdzPw">Natural hydrogen: The Australian context</a> - Chris Boreham <b>Session 2 – Sedimentary basin resource potential – source rocks, carbon capture and storage (CCS) and groundwater</b> <a href="https://youtu.be/44qPlV7h3os?si=wfQqxQ81Obhc_ThE">Australian Source Rock and Fluid Atlas - Accessible visions built on historical data archives</a> - Dr Dianne Edwards <a href="https://youtu.be/WcJdSzsADV8?si=aH5aYbpnjaz3Qwj9">CO2: Where can we put it and how much will it cost?</a> - Claire Patterson <a href="https://youtu.be/Y8sA-iR86c8?si=CUsERoEkNDvIwMtc">National aquifer framework: Putting the geology into hydrogeology</a> - Dr Nadege Rollet <b>Session 3 – Towards a national inventory of resource potential and sustainable development</b> <a href="https://youtu.be/K5xGpwaIWgg?si=2s0AKuNpu30sV1Pu">Towards a national inventory of mineral potential</a> - Dr Arianne Ford <a href="https://youtu.be/XKmEXwQzbZ0?si=yAMQMjsNCGkAQUMh">Towards an inventory of mine waste potential</a> - Dr Anita Parbhakar-Fox <a href="https://youtu.be/0AleUvr2F78?si=zS4xEsUYtARywB1j">ESG mapping of the Australian mining sector: A critical review of spatial datasets for decision making</a> - Dr Eleonore Lebre View or download the <a href="https://dx.doi.org/10.26186/149800">Exploring for the Future - An overview of Australia’s transformational geoscience program</a> publication. View or download the <a href="https://dx.doi.org/10.26186/149743">Exploring for the Future - Australia's transformational geoscience program</a> publication. You can access full session and Q&A recordings from YouTube here: 2024 Showcase Day 3 - Session 1 - <a href="https://www.youtube.com/watch?v=Ho6QFMIleuE">Hydrogen opportunities across Australia</a> 2024 Showcase Day 3 - Session 2 - <a href="https://www.youtube.com/watch?v=ePZfgEwo0m4">Sedimentary basin resource potential – source rocks, carbon capture and storage (CCS) and groundwater</a> 2024 Showcase Day 3 - Session 3 - <a href="https://www.youtube.com/watch?v=CjsZVK4h6Dk">Towards a national inventory of resource potential and sustainable development</a>

  • The document summarises new seismic interpretation metadata for two key horizons from Base Jurassic to mid-Cretaceous strata across the western and central Eromanga Basin, and the underlying Top pre-Permian unconformity. New seismic interpretations were completed during a collaborative study between the National Groundwater Systems (NGS) and Australian Future Energy Resources (AFER) projects. The NGS and AFER projects are part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf. The seismic interpretations build on previous work undertaken as part of the ‘Assessing the Status of Groundwater in the Great Artesian Basin’ (GAB) Project, commissioned by the Australian Government through the National Water Infrastructure Fund – Expansion (Norton & Rollet, 2022; Vizy & Rollet, 2022; Rollet et al., 2022; Rollet et al., in press.), the NGS Project (Norton & Rollet, 2023; Rollet et al., 2023; Vizy & Rollet, 2023) and the AFER Project (Bradshaw et al., 2022 and in press, Bernecker et al., 2022, Iwanec et al., 2023; Iwanec et al., in press). The recent iteration of revisions to the GAB geological and hydrogeological surfaces (Vizy & Rollet, 2022) provides a framework to interpret various data sets consistently (e.g., boreholes, airborne electromagnetic, seismic data) and in a 3D domain, to improve our understanding of the aquifer geometry, and the lateral variation and connectivity in hydrostratigraphic units across the GAB (Rollet et al., 2022). Vizy and Rollet (2022) highlighted some areas with low confidence in the interpretation of the GAB where further data acquisition or interpretation may reduce uncertainty in the mapping. One of these areas was in the western and central Eromanga Basin. New seismic interpretations are being used in the western Eromanga, Pedirka and Simpson basins to produce time structure and isochore maps in support of play-based energy resource assessment under the AFER Project, as well as to update the geometry of key aquifers and aquitards and the GAB 3D model for future groundwater management under the NGS Project. These new seismic interpretations fill in some data and knowledge gaps necessary to update the geometry and depth of key geological and hydrogeological surfaces defined in a chronostratigraphic framework (Hannaford et al., 2022; Bradshaw et al., 2022 and in press; Hannaford & Rollet, 2023). The seismic interpretations are based on a compilation of newly reprocessed seismic data (Geoscience Australia, 2022), as part of the EFTF program, and legacy seismic surveys from various vintages brought together in a common project with matching parameters (tying, balancing, datum correcting, etc.). This dataset has contributed to a consolidated national data coverage to further delineate groundwater and energy systems, in common data standards and to be used further in integrated workflows of mineral, energy and groundwater assessment. The datasets associated with the product provides value added seismic interpretation in the form of seismic horizon point data for two horizons that will be used to improve correlation to existing studies in the region. The product also provides users with an efficient means to rapidly access a list of core data used from numerous sources in a consistent and cleaned format, all in a single package. The following datasets are provided with this product: 1) Seismic interpretation in a digital format (Appendix A), in two-way-time, on key horizons with publically accessible information, including seismic interpretation on newly reprocessed data: Top Cadna-owie; Base Jurassic; Top pre-Permian; 2) List of surveys compiled and standardised for a consistent interpretation across the study area (Appendix B). 3) Isochore points between Top Cadna-owie and Base Jurassic (CC10-LU00) surfaces (Appendix C). 4) Geographical layer for the seismic lines compiled across Queensland, South Australia and the Northern Territory (Appendix D). These new interpretations will be used to refine the GAB geological and hydrogeological surfaces in this region and to support play-based energy resource assessments in the western Eromanga, Pedirka and Simpson basins.

  • This was the fourth of five presentations held on 31 July 2023 as part of the National Groundwater Systems Workshop - Detailed Groundwater Science Inventory Geology, hydrogeology and groundwater systems in the Kati Thanda-Lake Eyre Basin.

  • Australia remains underexplored or unexplored, boasting discovery potential in the mineral, groundwater, and energy resources hidden beneath the surface. These “greenfield” areas are key to Australia’s future prosperity and sustainability. Led by Geoscience Australia, Australia’s national government geoscience organisation, the Exploring for the Future program was a groundbreaking mission to map Australia’s mineral, energy, and groundwater systems in unparalleled scale and detail. The program has advanced our understanding of Australia’s untapped potential. Over the course of 8 years, the Exploring for the Future program provided a significant expansion of public, precompetitive geoscience data and information, equipping decision-makers with the knowledge and tools to tackle urgent challenges related to Australia’s resource prosperity, energy security, and groundwater supply.

  • <div>This was the last of five presentations held on 31 July 2023 as part of the National Groundwater Systems Workshop. Towards developing a 3D hydrogeological framework for Australia: A common chronostratigraphic framework for aquifers&nbsp;</div><div><br></div>

  • This report, completed as part of Geoscience Australia’s Exploring for the Future Program National Groundwater Systems (NGS) Project, presents results of the second iteration of 3D geological and hydrogeological surfaces across eastern Australian basins. The NGS project is part of the Exploring for the Future (EFTF) program—an eight-year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program. The program seeks to inform decision-making by government, community, and industry on the sustainable development of Australia's mineral, energy, and groundwater resources, including those to support the effective long-term management of GAB water resources. This work builds on the first iteration completed as part of the Great Artesian Basin Groundwater project. The datasets incorporate infills of data and knowledge gaps in the Great Artesian Basin (GAB), Lake Eyre Basin (LEB), Upper Darling Floodplain (UDF) and existing data in additional basins in eastern Australia. The study area extends from the offshore Gulf of Carpentaria in the north to the offshore Bight, Otway, and Gippsland basins in the South and from the western edge of the GAB in the west to the eastern Australian coastline to the east. The revisions are an update to the surface extents and thicknesses for 18 region-wide hydrogeological units produced by Vizy & Rollet, 2022. The second iteration of the 3D model surfaces further unifies geology across borders and provides the basis for a consistent hydrogeological framework at a basin-wide, and towards a national-wide, scale. The stratigraphic nomenclature used follows geological unit subdivisions applied: (1) in the Surat Cumulative Management Area (OGIA - Office of Groundwater Impact Assessment, 2019) to correlate time equivalent regional hydrogeological units in the GAB and other Jurassic and Cretaceous time equivalent basins in the study area and (2) in the LEB to correlate Cenozoic time equivalents in the study area. Triassic to Permian and older basins distribution and thicknesses are provided without any geological and hydrogeological unit sub-division. Such work helps to (1) reconcile legacy and contemporary regional studies under a common stratigraphic framework, (2) support the effective management of groundwater resources, and (3) provide a regional geological context for integrated resource assessments. The 18 hydrogeological units were constructed using legacy borehole data, 2D seismic and airborne electromagnetic (AEM) data that were compiled for the first iteration of the geological and hydrogeological surfaces under the GAB groundwater project (Vizy & Rollet, 2022a) with the addition of: • New data collected and QC’d from boreholes (including petroleum, CSG [Coal Seam Gas], stratigraphic, mineral and water boreholes) across Australia (Vizy & Rollet, 2023a) since the first iteration, including revised stratigraphic correlations filling data and knowledge gaps in the GAB, LEB, UDF region (Norton & Rollet, 2023) with revised palynological constraints (Hannaford & Rollet 2023), • Additional AEM interpretation since the first iteration in the GAB, particularly in the northern Surat (McPherson et al., 2022b), as well as in the LEB (Evans et al., in prep), in the southern Eromanga Basin (Wong et al., 2023) and in the UDF region (McPherson et al., 2022c), and • Additional 2D seismic interpretation in the Gulf of Carpentaria (Vizy & Rollet, 2023b) and in the western and central Eromanga Basin (Szczepaniak et al., 2023). These datasets were then analysed and interpreted in a common 3D domain using a consistent chronostratigraphic framework tied to the geological timescale of 2020, as defined by Hannaford et al. (2022). Confidence maps were also produced to highlight areas that need further investigation due to data gaps, in areas where better seismic depth conversion or improved well formation picks are required. New interpretations from the second iteration of the 18 surfaces include (1) new consistent and regionally continuous surfaces of Cenozoic down to Permian and older sediments beyond the extent of the GAB across eastern Australia, (2) revised extents and thicknesses of Jurassic and Cretaceous units in the GAB, including those based on distributed thickness, (3) revised extents and thicknesses of Cenozoic LEB units constrained by the underlying GAB 3D model surfaces geometry. These data constraints were not used in the model surfaces generated for the LEB detailed inventory (Evans et al., 2023), and (4) refinements of surfaces due to additional seismic and AEM interpretation used to infill data and knowledge gaps. Significant revisions include: • The use of additional seismic data to better constrain the base of the Poolowanna-Evergreen formations and equivalents and the top of Cadna-owie Formation and equivalents in the western and central Eromanga Basin, and the extent and thicknesses of the GAB units and Cenozoic Karumba Basin in the Gulf of Carpentaria, • The use of AEM interpretations to refine the geometry of outcropping units in the northern Surat Basin and the basement surface underneath the UDF region, and • A continuous 3D geological surface of base Cenozoic sediments across eastern Australia including additional constraints for the Lake Eyre Basin (borehole stratigraphy review), Murray Basin (AEM interpretation) and Karumba Basin (seismic interpretation). These revisions to the 18 geological and hydrogeological surfaces will help improve our understanding on the 3D spatial distribution of aquifers and aquitards across eastern Australia, from the groundwater recharge areas to the deep confined aquifers. These data compilations and information brought to a common national standard help improve hydrogeological conceptualisation of groundwater systems across multiple jurisdictions to assist water managers to support responsible groundwater management and secure groundwater into the future. These 3D geological and hydrogeological modelled surfaces also provide a tool for consistent data integration from multiple datasets. These modelled surfaces bring together variable data quality and coverage from different databases across state and territory jurisdictions. Data integration at various scale is important to assess potential impact of different water users and climate change. The 3D modelled surfaces can be used as a consistent framework to map current groundwater knowledge at a national scale and help highlight critical groundwater areas for long-term monitoring of potential impacts on local communities and Groundwater Dependant Ecosystems. The distribution and confidence on data points used in the current iteration of the modelled surfaces highlight where data poor areas may need further data acquisition or additional interpretation to increase confidence in the aquifers and aquitards geometry. The second iteration of surfaces highlights where further improvements can be made, notably for areas in the offshore Gulf of Carpentaria with further seismic interpretation to better constrain the base of the Aptian marine incursion (to better constrain the shape and offshore extent of the main aquifers). Inclusion of more recent studies in the offshore southern and eastern margins of Australia will improve the resolution and confidence of the surfaces, up to the edge of the Australian continental shelf. Revision of the borehole stratigraphy will need to continue where more recent data and understanding exist to improve confidence in the aquifer and aquitard geometry and provide better constraints for AEM and seismic interpretation, such as in the onshore Carpentaria, Clarence-Moreton, Sydney, Murray-Darling basins. Similarly adding new seismic and AEM interpretation recently acquired and reprocessed, such as in the eastern Eromanga Basin over the Galilee Basin, would improve confidence in the surfaces in this area. Also, additional age constraints in formations that span large periods of time would help provide greater confidence to formation sub-divisions that are time equivalent to known geological units that correlate to major aquifers and aquitards in adjacent basins, such as within the Late Jurassic‒Early Cretaceous in the Eromanga and Carpentaria basins. Finally, incorporating major faults and structures would provide greater definition of the geological and hydrogeological surfaces to inform with greater confidence fluid flow pathways in the study area. This report is associated with a data package including (Appendix A – Supplementary material): • Nineteen geological and hydrogeological surfaces from the Base Permo-Carboniferous, Top Permian, Base Jurassic, Base Cenozoic to the surface (Table 1.1), • Twenty-one geological and hydrogeological unit thickness maps from the top crystalline basement to the surface (Figure 3.1 to Figure 3.21), • The formation picks and constraining data points (i.e., from boreholes, seismic, AEM and outcrops) compiled and used for gridding each surface (Table 2.7). Detailed explanation of methodology and processing is described in the associated report (Vizy & Rollet, 2023).

  • Geoscience Australia’s regional assessments and basin inventories are investigating Australia’s groundwater systems to improve knowledge of the nation’s groundwater potential under the Exploring for the Future (EFTF) Program and Geoscience Australia’s Strategy 2028. Where applicable, integrated basin analysis workflows are being used to build geological architecture advancing our understanding of hydrostratigraphic units and tie them to a nationally consistent chronostratigraphic framework. Here we focus on the Great Artesian Basin (GAB) and overlying Lake Eyre Basin (LEB), where groundwater is vital for pastoral, agricultural and extractive industries, community water supplies, as well as supporting indigenous cultural values and sustaining a range of groundwater dependent ecosystems such as springs and vegetation communities. Geoscience Australia continued to revise the chronostratigraphic framework and hydrostratigraphy for the GAB infilling key data and knowledge gaps from previous compilations. In collaboration with Commonwealth and State government agencies, we compiled and standardised thousands of boreholes, stratigraphic picks, 2D seismic and airborne electromagnetic data across the GAB. We undertook a detailed stratigraphic review on hundreds of key boreholes with geophysical logs to construct consistent regional transects across the GAB and LEB, using geological time constraints from hundreds of boreholes with existing and newly interpreted biostratigraphic data. We infilled the stratigraphic correlations along key transects across Queensland, New South Wales, South Australia and Northern Territory borders to refine nomenclature and stratigraphic relationships between the Surat, Eromanga and Carpentaria basins, improving chronostratigraphic understanding within the Jurassic to Cretaceous units. We extended the GAB geological framework to the overlying LEB to better resolve the Cenozoic stratigraphy and potential hydrogeological connectivity. New data and information fill gaps and refine the previous 3D hydrogeological model of the entire GAB and LEB. The new 3D geological and hydrostratigraphic model provides a framework to integrate additional hydrogeological and rock property data. It assists in refining hydraulic relationships between aquifers within the GAB and provides a basis for developing more detailed hydrogeological system conceptualisations. This is a step towards the future goal of quantifying hydraulic linkages with underlying basins, and overlying Cenozoic aquifers to underpin more robust understanding of the hydrogeological systems within the GAB. This approach can be extended to other regional hydrogeological systems. This Abstract was submitted/presented at the 2023 Australasian Exploration Geoscience Conference (AEGC) 13-18 March (https://2023.aegc.com.au/)

  • This data package, completed as part of Geoscience Australia’s National Groundwater Systems (NGS) Project, presents results of the second iteration of the 3D Great Artesian Basin (GAB) and Lake Eyre Basin (LEB) (Figure 1) geological and hydrogeological models (Vizy & Rollet, 2023) populated with volume of shale (Vshale) values calculated on 2,310 wells in the Surat, Eromanga, Carpentaria and Lake Eyre basins (Norton & Rollet, 2023). This provides a refined architecture of aquifer and aquitard geometry that can be used as a proxy for internal, lateral, and vertical, variability of rock properties within each of the 18 GAB-LEB hydrogeological units (Figure 2). These data compilations and information are brought to a common national standard to help improve hydrogeological conceptualisation of groundwater systems across multiple jurisdictions. This information will assist water managers to support responsible groundwater management and secure groundwater into the future. This 3D Vshale model of the GAB provides a common framework for further data integration with other disciplines, industry, academics and the public and helps assess the impact of water use and climate change. It aids in mapping current groundwater knowledge at a GAB-wide scale and identifying critical groundwater areas for long-term monitoring. The NGS project is part of the Exploring for the Future (EFTF) program—an eight-year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program. The program seeks to inform decision-making by government, community, and industry on the sustainable development of Australia's mineral, energy, and groundwater resources, including those to support the effective long-term management of GAB water resources. This work builds on the first iteration completed as part of the Great Artesian Basin Groundwater project (Vizy & Rollet, 2022; Rollet et al., 2022), and infills previous data and knowledge gaps in the GAB and LEB with additional borehole, airborne electromagnetic and seismic interpretation. The Vshale values calculated on additional wells in the southern Surat and southern Eromanga basins and in the whole of Carpentaria and Lake Eyre basins provide higher resolution facies variability estimates from the distribution of generalised sand-shale ratio across the 18 GAB-LEB hydrogeological units. The data reveals a complex mixture of sedimentary environments in the GAB, and highlights sand body development and hydraulic characteristics within aquifers and aquitards. Understanding the regional extents of these sand-rich areas provides insights into potential preferential flow paths, within and between the GAB and LEB, and aquifer compartmentalisation. However, there are limitations that require further study, including data gaps and the need to integrate petrophysics and hydrogeological data. Incorporating major faults and other structures would also enhance our understanding of fluid flow pathways. The revised Vshale model, incorporating additional boreholes to a total of 2,310 boreholes, contributes to our understanding of groundwater flow and connectivity in the region, from the recharge beds to discharge at springs, and Groundwater Dependant Ecosystems (GDEs). It also facilitates interbasinal connectivity analysis. This 3D Vshale model offers a consistent framework for integrating data from various sources, allowing for the assessment of water use impacts and climate change at different scales. It can be used to map groundwater knowledge across the GAB and identify areas that require long-term monitoring. Additionally, the distribution of boreholes with gamma ray logs used for the Vshale work in each GAB and LEB units (Norton & Rollet, 2022; 2023) is used to highlight areas where additional data acquisition or interpretation is needed in data-poor areas within the GAB and LEB units. The second iteration of surfaces with additional Vshale calculation data points provides more confidence in the distribution of sand bodies at the whole GAB scale. The current model highlights that the main Precipice, Hutton, Adori-Springbok and Cadna-owie‒Hooray aquifers are relatively well connected within their respective extents, particularly the Precipice and Hutton Sandstone aquifers and equivalents. The Bungil Formation, the Mooga Sandstone and the Gubberamunda Sandstone are partial and regional aquifers, which are restricted to the Surat Basin. These are time equivalents to the Cadna-owie–Hooray major aquifer system that extends across the Eromanga Basin, as well as the Gilbert River Formation and Eulo Queen Group which are important aquifers onshore in the Carpentaria Basin. The current iteration of the Vshale model confirms that the Cadna-owie–Hooray and time equivalent units form a major aquifer system that spreads across the whole GAB. It consists of sand bodies within multiple channel belts that have varying degrees of connectivity' i.e. being a channelised system some of the sands will be encased within overbank deposits and isolated, while others will be stacked, cross-cutting systems that provide vertical connectivity. The channelised systemtransitions vertically and laterally into a shallow marine environment (Rollet et al., 2022). Sand-rich areas are also mapped within the main Poolowanna, Brikhead-Walloon and Westbourne interbasinal aquitards, as well as the regional Rolling Downs aquitard that may provide some potential pathways for upward leakage of groundwater to the shallow Winton-Mackunda aquifer and overlying Lake Eyre Basin. Further integration with hydrochemical data may help groundtruth some of these observations. This metadata document is associated with a data package including: • Seventeen surfaces with Vshale property (Table 1), • Seventeen surfaces with less than 40% Vshale property (Table 2), • Twenty isochore with average Vshale property (Table 3), • Twenty isochore with less than 40% Vshale property (Table 4), • Sixteen Average Vshale intersections of less than 40% Vshale property delineating potential connectivity between isochore (Table 5), • Sixteen Average Vshale intersections of less than 40% Vshale property delineating potential connectivity with isochore above and below (Table 6), • Seventeen upscaled Vshale log intersection locations (Table 7), • Six regional sections showing geology and Vshale property (Table 8), • Three datasets with location of boreholes, sections, and area of interest (Table 9).

  • <div>This report brings together data and information relevant to understanding the regional geology, hydrogeology, and groundwater systems of the South Nicholson – Georgina (SNG) region in the Northern Territory and Queensland. This integrated, basin-scale hydrogeological assessment is part of Geoscience Australia’s National Groundwater Systems project in the Exploring for the Future program. While the northern Georgina Basin has been at the centre of recent investigations as part of studies into the underlying Beetaloo Sub-basin, no regional groundwater assessments have focused on central and southern parts of the Georgina Basin since the 1970s. Similarly, there has been no regional-scale hydrogeological investigation of the deeper South Nicholson Basin, although the paucity of groundwater data limited detailed assessment of the hydrogeology of this basin. This comprehensive desktop study has integrated numerous geoscience and hydrogeological datasets to develop a new whole-of-basin conceptualisation of groundwater flow systems and recharge and discharge processes within the regional unconfined aquifers of the Georgina Basin.</div><div><br></div><div>Key outputs arising from this study include: (1) the development of a hydrostratigraphic framework for the region, incorporating improved aquifer attribution for over 5,000 bores; and (2) publicly available basin-scale groundwater GIS data layers and maps, including a regional watertable map for the whole Georgina Basin. This regional assessment provides new insights into the hydrogeological characteristics and groundwater flow dynamics within the Georgina Basin, which can aid in the sustainable management of groundwater for current and future users reliant on this critical water resource.</div><div><br></div><div><br></div>