Hydrogen
Type of resources
Keywords
Publication year
Service types
Topics
-
This web service features Australian hydrogen projects that are actively in the investigation, construction, or operating phase, and that align with green hydrogen production methods as outlined in Australia's National Hydrogen Strategy. The purpose of this dataset is to provide a detailed snapshot of hydrogen activity across Australia, and includes location data, operator/organisation details, and descriptions for all hydrogen projects listed.
-
This web service features Australian hydrogen projects that are actively in the investigation, construction, or operating phase, and that align with green hydrogen production methods as outlined in Australia's National Hydrogen Strategy. The purpose of this dataset is to provide a detailed snapshot of hydrogen activity across Australia, and includes location data, operator/organisation details, and descriptions for all hydrogen projects listed.
-
The discovery of strategically located salt structures, which meet the requirements for geological storage of hydrogen, is crucial to meeting Australia’s ambitions to become a major hydrogen producer, user and exporter. The use of the AusAEM airborne electromagnetic (AEM) survey’s conductivity sections, integrated with multidisciplinary geoscientific datasets, provides an excellent tool for investigating the near-surface effects of salt-related structures, and contributes to assessment of their potential for underground geological hydrogen storage. Currently known salt in the Canning Basin includes the Mallowa and Minjoo salt units. The Mallowa Salt is 600-800 m thick over an area of 150 × 200 km, where it lies within the depth range prospective for hydrogen storage (500-1800 m below surface), whereas the underlying Minjoo Salt is generally less than 100 m thick within its much smaller prospective depth zone. The modelled AEM sections penetrate to ~500 m from the surface, however, the salt rarely reaches this level. We therefore investigate the shallow stratigraphy of the AEM sections for evidence of the presence of underlying salt or for the influence of salt movement evident by disruption of near-surface electrically conductive horizons. These horizons occur in several stratigraphic units, mainly of Carboniferous to Cretaceous age. Only a few examples of localised folding/faulting have been noted in the shallow conductive stratigraphy that have potentially formed above isolated salt domes. Distinct zones of disruption within the shallow conductive stratigraphy generally occur along the margins of the present-day salt depocentre, resulting from dissolution and movement of salt during several stages. This study demonstrates the potential AEM has to assist in mapping salt-related structures, with implications for geological storage of hydrogen. In addition, this study produces a regional near-surface multilayered chronostratigraphic interpretation, which contributes to constructing a 3D national geological architecture, in support of environmental management, hazard mapping and resource exploration. <b>Citation: </b>Connors K. A., Wong S. C. T., Vilhena J. F. M., Rees S. W. & Feitz A. J., 2022. Canning Basin AusAEM interpretation: multilayered chronostratigraphic mapping and investigating hydrogen storage potential. In: Czarnota, K (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146376
-
Hydrogen can be used for a variety of domestic and industrial purposes such as heating and cooking (as a replacement for natural gas), transportation (replacing petrol and diesel), and energy storage (by converting intermittent renewable energy into hydrogen). The key benefit of using hydrogen is that it is a clean fuel that emits only water vapour and heat when combusted. To support implementation of the National Hydrogen Strategy, Geoscience Australia in collaboration with Monash University are releasing the Hydrogen Economic Fairways Tool (HEFT). HEFT is a free online tool designed to support decision making by policymakers and investors on the location of new infrastructure and development of hydrogen hubs in Australia. It considers both hydrogen produced from renewable energy and from fossil fuels with carbon capture and storage. Tune in to this seminar to discover HEFT’s capabilities, its potential to attract worldwide investment into Australia’s hydrogen industry, and what’s up next for hydrogen at Geoscience Australia.
-
<div>The energy and resources industries are two essential pillars of Australia’s economy and vital sectors in the global transition to a sustainable and net-zero economy. To enhance Australia’s competitiveness, there is an urgent need to explore technical and strategic challenges and opportunities to unlock domestic hydrogen and green steel development pathways that are suitable for the Australian resources and manufacturing ecosystem. </div><div><br></div><div>Held on 30 August 2023 in Perth, Western Australia, this workshop provided Australian stakeholders in the hydrogen, iron ore and government sectors a forum to share, discuss and provide insight on a broad range of aspects relevant to hydrogen and green steel development opportunities across Australia—including identifying investment hurdles, technical challenges and knowledge gaps, and fostering new innovation and collaboration opportunities.</div><div><br></div><div>As part of the Exploring for the Future program, Geoscience Australia, in collaboration with Monash University, premiered its Green Steel Economic Fairways tool, which utilises geoscience knowledge and data to highlight regional opportunities of high economic potential for hydrogen and green steel industries in Australia.</div><div><br></div><div>The recording of the workshop presentations is available on YouTube.</div>
-
Large-scale storage of commercially produced hydrogen worldwide is presently stored in salt caverns. Through the Exploring for the Future program, Geoscience Australia is identifying and mapping salt deposits in Australia that may be suitable for hydrogen storage. The Adavale Basin in central Queensland is home to the Boree Salt, which is the only known thick salt deposit in eastern Australia and has the potential to become a strategic resource for underground hydrogen storage. The Boree Salt primarily consists of halite and can be as much as 555 meters thick in certain wells. Geoscience Australia contracted CSIRO to conduct a geochemistry test on four salt core samples from the Boree 1 and Bury 1 wells to analyse potential organic matter. Seven sub-samples of dark and clean salt from each core were sent to CSIRO's organic geochemistry laboratory in Lindfield, NSW. The results indicated that no organic matter was found in the Boree Salt samples. Disclaimer Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not solely rely on this information when making a commercial decision. This dataset is published with the permission of the CEO, Geoscience Australia.
-
Publicly available geological data in the Cooper Basin region are compiled to produce statements of existing knowledge for natural hydrogen, hydrogen storage, coal and mineral occurrences. This web service summarises mineral potential in the Cooper Basin region.
-
This web service depicts potential geological sequestration sites and has been compiled as part of the Australian Petroleum Cooperative Research Centre's GEODISC program (1999-2002).
-
This web service displays potential port locations for hydrogen export. This data is directly referenced to ‘The Australia Hydrogen Hubs Study – Technical Study’ by ARUP for the COAG Energy Council Hydrogen Working Group, 2019’.
-
There is significant momentum in Australia to develop a hydrogen production industry. The Australian economy is highly reliant on fossil fuel exports and hydrogen is seen as a pathway to decarbonise Australia’s economy and as a source of ongoing export revenue in future years. Although not readily available in its natural form, hydrogen can be produced as a gas and used for a variety of everyday tasks and industrial uses: heating and cooking, transportation, alternative feedstock in industry, and energy storage. This talk provides a 101 on hydrogen and maps out a vision of hydrogen production in Australia.