From 1 - 10 / 130
  • <div>The Australian Government's Trusted Environmental and Geological Information program is a collaboration between Geoscience Australia and CSIRO. Part of this program includes baseline geological and environmental assessments. </div><div> Hydrogeological information has been collated for the Adavale, Cooper, Galilee and north Bowen basins and overlying basins, including the Eromanga and Lake Eyre basins. This information will provide a regionally-consistent baseline dataset that will be used to develop groundwater conceptualisation models.</div><div> Publicly-available data within these basin regions have been compiled from over 30&nbsp;000 boreholes, 120 stream gauges, and 1100 rainfall stations, resulting in revised hydrostratigraphic frameworks. From the published literature, 14 major hydrostratigraphic units are recognised within the basin regions. For each of these major hydrostratigraphic units, we determined the salinity, Darcian yield, specific yield/storativity, groundwater reserve volume for unallocated groundwater, groundwater levels/hydrological pressure, likelihood of inter-aquifer connectivity, rainfall, connectivity between surface water and groundwater, and water-use volume statistics, where relevant, for each basin, hydrogeological province and aquifer. We then adopted a play-based approach to develop holistic hydrostratigraphic conceptualisations of the basin regions. </div><div> Within the Adavale Basin we have defined a new hydrogeological province including two new aquifers defined as the moderate salinity and moderately overpressured Buckabie-Etonvale Aquifer, and the hypersaline and hyper-overpressured Lissoy-Log Creek-Eastwood Aquifer. Similarities between the upper Buckabie-Etonvale Aquifer of the Adavale Basin and lowermost Joe Joe Group of the Galilee Basin suggests connectivity between the upper Adavale and lower Galilee basins. Hydraulic pressures (up to 1500 m of excess freshwater head) calculated for the Lissoy–Log Creek–Eastwood Aquifer indicate that if the aquifer was to be breached, there is potential localised risk to overlying aquifers and surface environments, including infrastructure.</div><div><br></div><div><strong>Author Biography:</strong></div><div>Dr. Chris Gouramanis is a hydrogeologist working in the Trusted Environmental and Geological Information program, in the Minerals, Energy and Groundwater Division of Geoscience Australia. Chris was awarded his PhD from The Australian National University in 2009 and has held several water and environmental policy positions within the Australian Government. He worked for 10 years as an academic at the Earth Observatory of Singapore and the Geography Department at the National University of Singapore. He is also Australia’s National Focal Point to the Scientific and Technical Review Panel of the Ramsar Convention on Wetlands.</div><div><br></div>This Abstract was submitted/presented to the 2022 Australasian Groundwater Conference 21-23 November (https://agc2022.com.au/)

  • Publicly available data was compiled to provide a common information base for resource development, environmental and regulatory decisions in the Galilee Basin. This data guide gives an example of how these data can be used to create the components of a workflow to identify conventional hydrocarbon resource (oil and gas) opportunities. The data guide is designed to support the data package that provide insights on conventional hydrocarbon resources in the Galilee Basin. The conventional hydrocarbon assessment for the Galilee Basin includes oil and gas resources for 5 geological intervals, termed plays – these intervals have been defined by Wainman et al. (2023). The assessment captures data from well completion reports and government data sources (e.g. Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal) to inform the 5 components required for conventional hydrocarbons to be present. One hundred and sixty-three boreholes in the Galilee Basin were assessed with data used to map out gross depositional environments and their geological properties relevant for conventional hydrocarbon assessments. From these datasets, the following properties were evaluated and mapped across the basin: reservoir presence, reservoir effectiveness, top seal, trap and charge. The data are compiled at a point in time to inform decisions on resource development activities. The guide outlines the play-based workflow for assessing conventional hydrocarbon resource prospectivity. Each of the elements required for a working unconventional hydrocarbon system is explained and mapped. These data are integrated and merged to show the relative assessment of hydrocarbon prospectivity across the basin, at both the play interval and basin scale. As an example of assessments contained within the data package, this data guide showcases the conventional hydrocarbon prospectivity of the Jericho Play interval.

  • The potential for hydrogen production in the Galilee Basin region is assessed to provide a joint information base for hydrogen generation potential from renewable energy, groundwater and natural gas coupled with carbon capture and storage (CCS). Hydrogen generation requires water, whether using electrolysis with renewable energy or steam methane reforming (SMR) of gas with CCS. The data package includes the regional renewable energy capacity factor, aquifers and their properties (potential yield, salinity, and reserves or storativity), natural gas resources, and geological storage potential of carbon dioxide (CO2). This data guide gives examples of how the compiled data can be used. The renewable hydrogen potential is assessed based on renewable energy capacity factor and groundwater information (potential yield, salinity, and reserves or storativity). Nine aquifers from the Galilee and overlying Eromanga and the Lake Eyre basins are included in the assessment. The Galilee Basin region has low renewable hydrogen potential except for small areas in the north, south and south-west. Although the renewable energy capacity factor in the basin is high, aquifers tend to have poor groundwater reserves or storativity, which results in lower overall renewable hydrogen potential. The Galilee Basin contains modest contingent gas resources, while sizeable gas reserves and contingent resources were identified in the overlying Eromanga Basin (Geoscience Australia, 2022). The geological CO2 storage assessment suggests that the Betts Creek - Rewan Play interval is the most prospective for CCS, with the highest potential around the central basin region. Further work on identifying detailed gas potential is needed to assess hydrogen generation potential from gas.

  • Publicly available data was compiled to provide a common information base for resource development, environmental and regulatory decisions in the Galilee Basin. This data guide gives an example of how these data can be used to create the components of a workflow to identify unconventional hydrocarbon resource opportunities. The data guide is designed to support the data package that provide insights on unconventional hydrocarbon resources in the Galilee Basin. The unconventional hydrocarbon assessment for the Galilee Basin includes tight gas, shale resources (shale oil and gas) and coal seam gas (CSG) for 5 geological intervals, termed plays – these intervals have been defined by Wainman et al. (2023). The assessment captures data from well completion reports and government data sources (e.g. Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal) along with the scientific literature to inform the components required for unconventional hydrocarbons to be present. One hundred and sixty-three boreholes in the Galilee Basin were assessed, with data used to map out gross depositional environments and their geological properties relevant for unconventional hydrocarbon assessments. The data are compiled at a point in time to inform decisions on resource development activities. The data guide outlines the play-based workflow for assessing unconventional hydrocarbon resource prospectivity. Each of the elements required for a prospective unconventional hydrocarbon system is explained and mapped. These data were merged and spatially multiplied to show the relative assessment of unconventional hydrocarbon prospectivity across the basin, at both the play interval and basin scale. As an example of assessments contained within the data package, this data guide showcases the CSG prospectivity of the Betts CreekRewan Play interval.

  • Publicly available geology data are compiled to provide a common information base for resource development and regulatory decisions in the Galilee Basin region. This data guide gives examples of how the compiled data can be used. It supports a data package that presents core photographs, existing knowledge of the stratigraphy, and structural elements for the Galilee Basin and the overlying Eromanga, Lake Eyre and other Cenozoic basins. Stratigraphic frameworks capture the geological groups and formations that make up the sedimentary sequence in the Galilee Basin region. The Galilee Basin includes 4 stratigraphic groups. From deepest to shallowest, these are the Joe Joe Group, Betts Creek group, Rewan Group and Clematis Group. Overlying the Galilee Basin are the geological formations of the Eromanga, Lake Eyre and other Cenozoic basins. The frameworks include the stratigraphic intervals used by the Trusted Environmental and Geological Information (TEGI) Program. From the base of the Galilee Basin to the top of overlying Cenozoic basins, the sedimentary sequence is categorised into 15 play intervals for resource assessment mapping and 11 hydrostratigraphic intervals for characterising groundwater systems (Wainman et al., 2023). Structural elements maps summarise where the sedimentary sequence has been deposited and later deformed by crustal movements. Structure information is used in assessing the geological potential for resources and interpreting groundwater flow and connectivity at the basin scale. The stratigraphic frameworks and structural elements provide the basic geological context for the Galilee Basin region geological, resource and environmental assessments.

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the Eromanga Basin. This data guide gives examples of how these data can be used to create the components of a workflow to identify geological storage of carbon dioxide (CO2) opportunities. The data guide is designed to support the data package that provide insights on the geological storage of CO2 in the Eromanga Basin. The geological storage of CO2 assessment for the Eromanga Basin overlying the Cooper, Adavale and Galilee basins encompasses 6 of the 9 geological intervals, termed plays – these intervals have been defined by Wainman et al. (2023a, b). The assessment captures data from the Great Artesian Basin geological and hydrogeological surfaces update (Vizy and Rollet, 2022), Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal (2020a), the Petroleum Exploration and Production System of South Australia (PEPS, 2021); Bradshaw et al. (2009) and Draper (2002) along with the scientific literature to inform the 4 components required for a prospective geological storage of CO2 system. These datasets are used to map out gross depositional environments and their geological properties relevant for geological storage of CO2 assessments. From these datasets, the following properties were evaluated and mapped across the basin: injectivity, storage efficiency, containment and structural complexity. The data are compiled at a point in time to inform decisions on resource development opportunities. The data guide outlines the play-based workflow for assessing geological storage of CO2 prospectivity. Each of the elements required for a prospective geological storage of CO2 system are explained and mapped. These data were merged and spatially multiplied to show the relative assessment of geological storage of CO2 prospectivity across the basin, both at a play interval and basin scale. As an example of assessments contained within the data package, this data guide showcases the geological storage of CO2 prospectivity of the Namur-Murta Play interval.

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the Galilee Basin. This data guide gives examples of how these data can be used to create the components of a workflow to identify geological storage of carbon dioxide (CO2) opportunities. The data guide is designed to support the data package that provide insights on the geological storage of CO2 in the Galilee Basin. The geological storage of CO2 assessment for the Galilee Basin encompasses 5 geological intervals, termed plays – these have been defined by Wainman et al. (2023). The assessment captures data from well completion reports and government data sources (e.g. Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal) to inform the 4 components required for a potential geological storage of CO2 system. One hundred and sixty-three boreholes in the Galilee Basin were used to map out gross depositional environments and their geological properties relevant for geological storage of CO2. From these datasets, the following properties were evaluated and mapped across the basin: injectivity, storage efficiency, containment and structural complexity. The data are compiled at a point in time to inform decisions on resource development opportunities. The guide outlines the play-based workflow for assessing geological storage of CO2 prospectivity. Each of the elements required for a prospective geological storage of carbon dioxide system are explained and mapped. These data were merged and spatially multiplied to show the relative assessment of geological storage of carbon dioxide prospectivity across the basin at both a play interval and basin scale. As an example of assessments contained within the data package, this data guide showcases the geological storage of CO2 prospectivity of the Betts Creek-Rewan Play interval.

  • Publicly available data was compiled to provide a common information base for resource development, environmental and regulatory decisions in the north Bowen Basin. This data guide gives an example of how these data can be used to create the components of a workflow to identify unconventional hydrocarbon resource opportunities. The data guide is designed to support the data package that provide insights on unconventional hydrocarbon resources in the north Bowen Basin. The unconventional hydrocarbon assessment for the north Bowen Basin includes tight gas, shale resources (shale oil and gas) and coal seam gas (CSG) for 4 geological intervals, termed plays – these intervals have been defined by Wainman et al. (2023). The assessment captures data from well completion reports and government data sources, including the Bowen and Surat Basins Regional Structural Framework Study (SRK Consulting, 2008), Rangal Supermodel 2015: Rangal-Baralaba-Bandanna Coal Measures in the Bowen and Galilee Basins (Sliwa et al., 2017), Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal (2020a), Coal Maturity Trends within the Bowen Basin (McKillop, 2016), and Rapid regional prioritisation for tight and shale gas potential of eastern and northern Australian basins (Hall et al., 2018) along with the scientific literature to inform the components required for unconventional hydrocarbons to be present. These datasets were used to map out gross depositional environments and their geological properties relevant for unconventional hydrocarbon assessments. The data are compiled at a point in time to inform decisions on resource development activities. The data guide outlines the play-based workflow for assessing unconventional hydrocarbon resource prospectivity. Each of the elements required for a prospective unconventional hydrocarbon system is explained and mapped. These data were merged and spatially multiplied to show the relative assessment of unconventional hydrocarbon prospectivity across the basin, at both the play interval and basin scale. As an example of assessments contained within the data package, this data guide showcases the CSG prospectivity of the Rewan–Blackwater Play interval.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Adavale Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Eromanga Basin aquifers in the Adavale Basin region and their properties, including salinity, water levels, resource size, potential aquifer yield and surface water interactions. The methods used to derive these data for all Eromanga Basin aquifers in the Adavale Basin region are outlined in the associated metadata files. These are described in groundwater conceptual models (Gouramanis et al., 2023). The Eromanga Basin overlying the Adavale Basin includes 5 broadly defined aquifer intervals: from deepest to shallowest, these are the Poolowanna, Hutton, Adori, Cadna-owie–Hooray and Winton-Mackunda aquifers. Compiled data are assigned to these intervals and used to characterise groundwater systems at the basin scale. The data are compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 are used for this compilation.

  • The potential for hydrogen production in the Adavale Basin region is assessed to provide a joint information base for hydrogen generation potential from renewable energy, groundwater, and natural gas coupled with carbon capture and storage (CCS). Hydrogen generation requires water, whether using electrolysis with renewable energy or steam methane reforming (SMR) with CCS. The data package includes the regional renewable energy capacity factor, aquifers and their properties (potential yield, salinity, and reserves or storativity), natural gas resources, and geological storage potential for carbon dioxide (CO2). This data guide gives examples of how the compiled data can be used. The renewable hydrogen potential is assessed based on renewable energy capacity factor and groundwater information (potential yield, salinity, and reserves or storativity). Eight aquifers from overlying basins (Galilee, Eromanga and Lake Eyre basins) are included in the assessment. The Adavale Basin region has low renewable hydrogen potential, except for some locations in the south-east and south-west. Although the renewable energy capacity factor in the basin is high, aquifers tend to have poor groundwater reserves or storativity, which results in lower overall renewable hydrogen potential. The Adavale Basin itself has no newly identified gas accumulation. However, gas reserves and contingent resources were identified in the overlying Galilee and Eromanga basins (Geoscience Australia, 2022). An assessment of CO2 geological storage also shows prospective storage areas in the Eromanga Basin within the Adavale Basin region (Bradshaw et al., 2023). Further work on identifying detailed gas potential is needed to assess hydrogen generation potential from gas.