petroleum exploration
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
Legacy product - no abstract available
-
Legacy product - no abstract available
-
Legacy product - no abstract available
-
Legacy product - no abstract available
-
Legacy product - no abstract available
-
A summary of the regional geology, geophysics, and petroleum potential of the Clarence-Moreton Basin
Legacy product - no abstract available
-
Legacy product - no abstract available
-
Cliff Head is the only producing oil field in the offshore Perth Basin. The lack of other exploration success has lead to a perception that the primary source rock onshore (Triassic Kockatea Shale) is absent or has limited generative potential. However, recent offshore well studies show the unit is present and oil prone. Multiple palaeo-oil columns were identified within Permian reservoir below the Kockatea Shale regional seal. This prompted a trap integrity study into fault reactivation as a critical risk for hydrocarbon preservation. Breach of accumulations could be attributed to mid Jurassic extension, Valanginian breakup, margin tilt or Miocene structuring. The study focused on four prospects, covered by 3D seismic data, containing breached and preserved oil columns. 3D geomechanical modelling simulated the response of trap-bounding faults and fluid flow to mid Jurassic-Early Cretaceous NW-SE extension. Calibration of modelling results against fluid inclusion data, as well as current and palaeo-oil columns, demonstrates that along-fault fluid flow correlates with areas of high shear and volumetric strains. Localisation of deformation leads to both an increase in structural permeability promoting fluid flow, and the development of hard-linkages between reactivated Permian reservoir faults and Jurassic faults producing top seal bypass. The main structural factors controlling the distribution of permeable fault segments are: (i) failure for fault strikes 350??110?N; (ii) fault plane intersections generating high shear deformation and dilation; and (iii) preferential reactivation of larger faults shielding neighbouring structures. These results point to a regional predictive approach for assessing trap integrity in the offshore Perth Basin.
-
Legacy product - no abstract available
-
Legacy product - no abstract available