From 1 - 10 / 8064
  • This web service delivers metadata for onshore active and passive seismic surveys conducted across the Australian continent by Geoscience Australia and its collaborative partners. For active seismic this metadata includes survey header data, line location and positional information, and the energy source type and parameters used to acquire the seismic line data. For passive seismic this metadata includes information about station name and location, start and end dates, operators and instruments. The metadata are maintained in Geoscience Australia's onshore active seismic and passive seismic database, which is being added to as new surveys are undertaken. Links to datasets, reports and other publications for the seismic surveys are provided in the metadata.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Murrindal, Vic, 1996 VIMP Survey (GSV3060) survey were acquired in 1995 by the VIC Government, and consisted of 15589 line-kilometres of data at 200m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Legacy product - no abstract available

  • Legacy product - no abstract available

  • The Australian Geological Survey Organistaion (AGSO) has produced a set of digital bathymetry, gravity and magnetic grids for the southwest quadrant of Australia (24 - 46S, 106-140E), using all available land, marine and satellite data. The work was done in cooperation with Desmond Fitzgerald & Associates (DFA), and with significant bathymetric data input from the Australian Hydrographic Office (AHO). The results were obtained by performing a network adjustment on marine ship-track data, and combining these with onshore and satellite-derived data.

  • Three seismic lines (10GA-CP1, 10GA-CP2 and 10GA-CP3), which cross north to south across the Capricorn Orogen of Western Australia, have recently been collected by Geoscience Australia, ANSIR and the Geological Survey of Western Australia. The interpretation of these seismic lines is aimed at providing insight into the geologic structure of the Capricorn Orogen and to explore the relationship between the Pilbara and Yilgarn cratons. To aid in further interpretation and to add value to the seismic data an analysis of the available potential field data (gravity and magnetics) has also been undertaken. A range of geophysical data analysis techniques have been applied and include: multi-scale edge detection (worms), forward modelling and 3D inversion. By applying all three analysis techniques to the potential-field data major trends, contrasting properties and regional blocks relating to the subsurface geology have been determined, in turn, allowing for a detailed comparison with the seismic interpretation. Note that all results referred to in this abstract are preliminary and subject to change.