Electrical and Electromagnetic Methods in Geophysics
Type of resources
Keywords
Publication year
Topics
-
The GEOPHYS_SURV database describes geophysical surveys (air, land, and marine), the datasets derived from those surveys, and the methods used for delivery of those datasets. The database includes metadata for all surveys conducted or managed by Geoscience Australia and its predecessor agencies, as well as data and surveys from State and Territory geological survey agencies.
-
Geoscience Australia is releasing into the public domain software for the inversion of airborne electromagnetic (AEM) data to a 1D conductivity depth structure. The software includes two different algorithms for 1D inversion of AEM data. The first is a gradient based deterministic inversion code for multi-layer (smooth model) and few-layered (blocky-model) inversions. The second is a reversible-jump Markov chain Monte Carlo stochastic inversion algorithm suitable for assessing model uncertainty. A forward modelling program and some other ancillary programs are also included. The code is capable of inverting data from all of the commercial time-domain systems available in Australia today, including dual moment systems. The software is accessible in three forms. As C++ source code, as binary executables for 64 bit Windows® PCs, and as a service on the Virtual Geophysics Laboratory (VGL). The code is fully parallelized for execution on a high performance cluster computer system or on a multi-core shared memory workstation via either the MPI or the OpenMP programming models.
-
The 2016 Lawn Hill VTEM™Plus airborne electromagnetic (AEM) survey was funded under the Queensland Government’s Future Resources (Mount Isa Geophysics) Initiative and managed by Geoscience Australia on behalf of the Geological Survey of Queensland. The survey covers an area of 3215 km2 which aims to attract explorers into ‘greenfield’ terranes and contribute to the discovery of the next generation of major mineral and energy deposits under shallow sedimentary cover. The survey is an extension to the 2016 East Isa VTEM™Plus Survey (eCAT:104700)
-
Airborne electromagnetic (AEM) data are an immensely useful tool for mapping cover thickness and under cover geology in Australia. The regional AEM surveys conducted by Geoscience Australia (GA) are an ideal starting point for integrating legacy AEM datasets across a range of scales with other information, e.g. borehole stratigraphy and shallow seismic data, to add to a national cover thickness map. Geoscience Australia is working towards this end as part of the UNCOVER Initiative.
-
Geoscience Australia flew three regional airborne electromagnetic (AEM) surveys as part of the Australian Government's 5-year Onshore Energy Security Program in 2007-08 (Paterson, WA), 2009 (Pine Creek, NT) and 2010 (Frome, SA). The aims of the surveys were to reduce risk and stimulate exploration investment for uranium by providing reliable pre-competitive data. When the data and interpretations of the surveys were released, there was a measurable upswing in industry investment in and around the survey areas and a number of new discoveries were made using the new data. Geoscience Australia is committed to the Australian Academy of Science's Searching the Deep Earth (UNCOVER) initiative, which has been adopted by Geoscience Australia as part of its long-term strategic planning. To assist this initiative, we are assessing the potential of AEM to characterise areas that are prospective for a range of commodities including gold, copper, lead, zinc, nickel, platinum group elements and rare earth elements, as well as uranium. The assessment will also extend to the potential for mapping geology under cover to explorable depths (< 400 m), mapping cover thickness around the flanks of major outcrop areas and providing new information on groundwater resources. Potential new areas for regional AEM surveying could include (in no particular order of priority): the Westmoreland region; the Georgetown Inlier; the Mt Isa region; the Broken Hill region, the Peake and Denison Ranges; the Eyre Peninsula (Gawler Craton); the Ngalia-Amadeus region; the Musgrave Province; the Windimurra Igneous Complex; the Capricorn-Ashburton area; the Lachlan-Thomson orogens; the Stawell and Ballarat areas; the southeast Yilgarn region (Yilgarn Craton flanks); and, the Tanami area.
-
Geoscience Australia first sought feedback on a metadata standard for magnetotelluric (MT) time-series data in 2018 with the publication of a Preview article (Kirkby, 2019) outlining suggestions for metadata fields that should be collected when running an MT survey. This was the first step in standardising the MT formats used by the Australian MT community to ensure a cohesive community approach moving forward. Intrepid Geophysics was subsequently contracted by Geoscience Australia to investigate the current community sentiment around a metadata standard and report on the community’s requirements for a standardised data format. Intrepid Geophysics was chosen as an independent party that had no significant stake in the magnetotellurics discussion. This report is the third made to Geoscience Australia in a series investigating the needs of the Australian magnetotelluric community, with a focus on the definition of the metadata that should be collected along with the raw data of an MT survey. The findings were collated from interviews conducted in the preliminary stage of the project as well as an online questionnaire that was sent to those who had agreed to be contacted. Feedback was constructive, centring on standardisation of parameter naming schemes, adding parameters that were missing and could add value, and misclassification of parameters. Future work should focus on a more widespread community engagement program that involves system manufacturers as well as building the metadata structure around the chosen data format.
-
The magnetotelluric (MT) method is increasingly being applied to mineral exploration under cover with several case studies showing that mineral systems can be imaged from the lower crust to the near surface. Driven by this success, the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is delivering long-period data on a 0.5° grid across Australia, and derived continental scale resistivity models that are helping to drive investment in mineral exploration in frontier areas. Part of this investment includes higher-resolution broadband MT surveys to enhance resolution of features of interest and improve targeting. To help gain best value for this investment it is important to have an understanding of the ability and limitations of MT to resolve features on different scales. Here we present synthetic modelling of conductive, narrow, near-vertical faults 500 m to 1500 m wide, and show that a station spacing of around 14 km across strike is sufficient to resolve these into the upper crust. However, the vertical extent of these features is not well constrained, with near-vertical planar features commonly resolved as two separate features. This highlights the need for careful interpretation of anomalies in MT inversion. In particular, in an exploration scenario, it is important to consider that a lack of interconnectivity between a lower crustal/upper mantle conductor and conductors higher up in the crust and the surface might be apparent only, and may not reflect reduced mineral prospectivity. Appeared in Exploration Geophysics Journal 05 Dec 2022
-
Water content and NMR relaxation times are the most important properties estimated from surface nuclear magnetic resonance (SNMR) data. These properties are estimated during the geophysical inversion of SNMR data. These data were acquired as part of the Exploring for the Future (EFTF) program at field sites within the East Kimberley and Southern Stuart Corridor field areas.
-
Precompetitive AEM data and associated scientific analysis assists exploration under cover by reducing risk, stimulating investment and promoting exploration for commodities. In recent years, Geoscience Australia has flown three regional Airborne Electromagnetic (AEM) surveys covering three percent of Australia. Data and associated interpretations from regional surveys in the Paterson, Pine Creek and Lake Frome regions have led to tenement take up, stimulated exploration for a number of commodities and have given rise to many Eureka moments. This presentation will outline significant results from the use of Geoscience Australia AEM data and interpretations, results that have been announced by industry via the Australian Stock Exchange and other publications.
-
For the AusAEM Year 1 survey an inertial measurement unit (IMU) was installed for the first time on the TEMPEST receiver bird to measure its orientation and to augment GPS derived positioning of the receiver. This has given us the opportunity to develop better quality control and calibration procedures, which would otherwise not be possible. Theoretical modelling of the primary field on high altitude zero-lines, using the full position/orientation information, revealed discrepancies between observed and modelled data. It alerted us to time-lag parallaxes between EM and bird position/orientation data, some spurious IMU data on many pre-flight zero-lines, and a coordinate system sign convention inconsistency. The modelling also revealed systematic differences that we could attribute to the calibration of the receiver pitch and EM data scaling. We developed an inversion algorithm to solve for a receiver pitch offset and an EM scaling calibration parameter, for each zero-line, which minimised the systematic discrepancies. It eventuated that the calibration parameters fell into five distinct populations explicable by significant equipment changes. This gave us the confidence to use the medians of these populations as parameters to calibrate the data. The work shows the value of the new receiver bird orientation data and the importance of accurate IMU calibration after any modification. It shows the practical utility of quantitative modelling in the quality control workflow. It also demonstrates how modelling and inversion procedure can be used to successfully diagnose calibration issues in fixed-wing AEM data. Presented at the 2019 Australasian Exploration Geoscience Conference