magnetotellurics
Type of resources
Keywords
Publication year
Service types
Topics
-
Broadband and audio magnetotelluric (BBMT and AMT) data at 476 sites on a 2 Km grid were acquired in the Cloncurry region between July and November 2016. The survey covered an area of appriximatly 40 km x 60 km on the eastern margin of the Mount Isa Province. The Cloncurry magnetotelluric (MT) project was funded by the Geological Survey of Queensland and is a collaborative project between the Geological Survey of Queensland and Geoscience Australia. Geoscience Australia managed the project and peformed data QA/QC, data analysis, and produced two-dimensional (2D) and three dimensional (3D) inverse models for both the BBMT and AMT data. This report details the field acquisition program and the methodologies used for processing, analysing, modelling and inverting the data.
-
The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) aims to collect long period magnetotelluric data on a half degree (~55 km) grid across the Australian continent. New data have recently been collected in New South Wales under a National Collaborative Framework agreement between Geoscience Australia and the Geological Survey of New South Wales. This data release contains a preferred resistivity model and associated inversion files for southeast Australia using data from AusLAMP Victoria (Duan & Kyi, 2018), far west NSW (Robertson et al. 2016) and from the rest of New South Wales up to August 2019 (Kyi et al 2020). The original work behind this model can be cited through the following paper which contains discussion on model development and its significance for tectonic evolution and metallogenic potential: Kirkby, A., Musgrave, R.J., Czarnota, K., Doublier, M.P., Duan, J., Cayley, R.A., Kyi, D., 2020. Lithospheric architecture of a Phanerozoic orogen from magnetotellurics: AusLAMP in the Tasmanides, southeast Australia. Tectonophysics, v. 793, 228560.
-
This OGC compliant service provides access to magnetotelluric data and associated products, which have been produced by Geoscience Australia’s Magnetotelluric Program. This program includes regional magnetotelluric projects and the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), a collaborative project between Geoscience Australia, the State and Northern Territory geological surveys, universities, and other research organisations. The data provided in this service comprise resistivity model depth sections and the locations of sites used in these studies.
-
This OGC compliant service provides access to magnetotelluric data and associated products, which have been produced by Geoscience Australia’s Magnetotelluric Program. This program includes regional magnetotelluric projects and the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), a collaborative project between Geoscience Australia, the State and Northern Territory geological surveys, universities, and other research organisations. The data provided in this service comprise resistivity model depth sections and the locations of sites used in these studies.
-
This OGC compliant service provides access to magnetotelluric data and associated products, which have been produced by Geoscience Australia’s Magnetotelluric Program. This program includes regional magnetotelluric projects and the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), a collaborative project between Geoscience Australia, the State and Northern Territory geological surveys, universities, and other research organisations. The data provided in this service comprise resistivity model depth sections and the locations of sites used in these studies.
-
We have used Audio-frequency Magnetotelluric (AMT) data to characterise cover and to estimate depth to basement for a number of regional drilling programs in geologically different regions across Australia. We applied deterministic and probabilistic inversion methods to derive 2D and 1D resistivity models. We have also used borehole results to ground-truth and validate the resistivity models and to improve geophysical interpretations. In the East Tennant region, borehole lithology and wireline logging demonstrates that the modelled AMT response is due to bulk conductivity/resistivity of the cover and basement rocks. The groundwater in the region is suitable for cattle drinking water, thus is of low overall salinity and is regarded as having little effect on bulk conductivity. Therefore the bulk conductivity/resistivity is due primarily to bulk mineralogy and the success of using the AMT models to predict cover thickness is shown to be dependent on whether the bulk mineralogy of cover and basement rocks are sufficiently different to provide a detectable conductivity contrast, and the sensitivity of the AMT response with increasing depth. In areas where there is sufficient difference in bulk mineralogy and where the stratigraphy is simple, AMT models predict the cover thickness with great certainty, particularly closer to the Earth’s surface. However, the geological system is not always simple, and we have provided examples where the AMT models provide an ambiguous response that needs to be interpreted with other data (e.g. drilling, wireline logging, potential field modelling) to validate the AMT model result. Overall, we conclude that the application of the method has been validated and the results can compare favourably with borehole stratigraphy logs once geological (i.e. bulk mineralogical) complexity is understood. This demonstrates that the method is capable of identifying major stratigraphic structures with resistivity contrasts. Our results have assisted with the planning of regional drilling programs and have helped to reduce the uncertainty and risk associated with intersecting targeted stratigraphic units in covered terrains. <b>Citation:</b> Jiang, W., Roach, I. C., Doublier, M. P., Duan, J., Schofield, A., Clark, A., & Brodie, R. C. Application of audio-frequency magnetotelluric data to cover characterisation – validation against borehole petrophysics in the East Tennant region, Northern Australia. <i>Exploration Geophysics</i>, 1-20, DOI: 10.1080/08123985.2023.2246492
-
<p>The footprint of a mineral system is potentially detectable at a variety of scales, from the ore deposit to the Earth’s crust and lithosphere. In order to map these systems, Geoscience Australia has undertaken a series of integrated studies to identify key regions of mineral potential using new data from the Exploring for the Future program together with legacy datasets. <p>The recently acquired long-period magnetotellurics (MT) data under the national-scale AusLAMP project mapped a lithospheric scale electrical conductivity anomaly to the east of Tennant Creek. This deep anomaly may represent a potential source region for mineral systems in the crust. In order to refine the geometry of this anomaly, high-resolution broadband and audio MT data were acquired at 131 stations in the East Tennant region and were released in Dec 2019 (http://dx.doi.org/10.26186/5df80d8615367). We have used these high-resolution MT data to produce a new 3D conductivity model to investigate crustal architecture and to link to mineral potential. The model revealed two prominent conductors in the resistive host, whose combined responses link to the deeper lithospheric-scale conductivity anomaly mapped in the broader AusLAMP model. The resistivity contrasts coincide with the major faults that have been interpreted from seismic reflection and potential field data. Most importantly, the conductive structures extend from the lower crust to near-surface, strongly suggesting that the major faults are deep penetrating structures that potentially act as pathways for transporting metalliferous fluids to the upper crust where they can form mineral deposits. Given the geological setting, these results suggest that the mineral prospectivity for iron oxide copper-gold deposits is enhanced in the vicinity of the major faults in the region. <p>This release package includes the 3D conductivity model produced using ModEM code in sGrid format and Geo-referenced depth slices in .tif format.
-
<div>The footprint of a mineral system is potentially detectable at a range of scales and lithospheric depths, reflecting the size and distribution of its components. Magnetotellurics is one of a few techniques that can provide multiscale datasets to understand mineral systems. The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is a collaborative national survey that acquires long-period magnetotelluric data on a half-degree grid spacing (about 55 km) across Australia. This project aims to map the electrical conductivity/resistivity structure in the crust and mantle beneath the Australian continent. We have used AusLAMP as a first-order reconnaissance survey to resolve large-scale lithospheric architecture for mapping areas of mineral potential in Australia. AusLAMP results show a remarkable connection between conductive anomalies and giant mineral deposits in known highly endowed mineral provinces. Similar conductive features are mapped in greenfield areas where mineralisation has not been previously recognised. In these areas we can then undertake higher-resolution infill magnetotelluric surveys to refine the geometry of major structures, and to investigate if deep conductive structures are connected to the near surface by crustal-scale fluid-flow pathways.</div><div> We summarise the results from a 3D resistivity model derived from AusLAMP data in Northern Australia. This model reveals a broad conductivity anomaly in the lower crust and upper mantle that extends beneath an undercover exploration frontier between the producing Tennant Creek region and the prospective Murphy Province. This anomaly potentially represents a fertile source region for mineral systems. A subsequent higher-resolution infill magnetotelluric survey revealed two prominent conductors within the crust whose combined responses produced the lithospheric-scale conductivity anomaly mapped in the AusLAMP model. Integration of the conductivity structure with deep seismic reflection data revealed a favourable crustal architecture linking the lower, fertile source regions with potential depositional sites in the upper crust. Integration with other geophysical and geochronological datasets suggests high prospectivity for major mineral deposits in the vicinity of major faults.</div><div> This study demonstrates that the integration of geophysical data from multiscale surveys is an effective approach to scale reduction during mineral exploration in covered terranes.</div> This Abstract was submitted to and presented at the 6th International Archean Symposium Target 2023, 28 July (https://6ias.org/target2023/)
-
The Cloncurry Extension Magnetotelluric (MT) Survey is located north of the township of Cloncurry, in the Eastern Succession of the Mount Isa Province. The survey expands MT coverage to the north and west of the 2016 Cloncurry MT survey. The survey was funded out of the Queensland Government’s Strategic Resources Exploration Program, which aims to support discovery of mineral deposits in the Mount Isa Region. The survey area is predominantly covered by conductive sediments of the Carpentaria Basin. The cover thickness ranges from zero metres in the extreme south west of the survey, to over 345 meters in the north. Acquisition started in August 2019 and was completed in October 2020. The acquisition was managed under an collaborative framework agreement between the Geological Survey of Queensland and Geoscience Australia until April 2020, after which the GSQ took over management of the project. Zonge Engineering and Research Organization were responsible for field acquisition. Data were collected at 2 km station spacing on a regular grid with a target bandwidth of 0.0001 – 1000 s. Instruments were left recording for a minimum of 24 hours unless disturbed by animals. The low signal strength posed a significant impediment for acquiring data to 1000 s, even with the 24 hour deployments. Almost all sites have data to 100 s, with longer period data at numerous sites.
-
The magnetotelluric (MT) method is increasingly being applied to mineral exploration under cover with several case studies showing that mineral systems can be imaged from the lower crust to the near surface. Driven by this success, the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is delivering long-period data on a 0.5° grid across Australia, and derived continental scale resistivity models that are helping to drive investment in mineral exploration in frontier areas. Part of this investment includes higher-resolution broadband MT surveys to enhance resolution of features of interest and improve targeting. To help gain best value for this investment it is important to have an understanding of the ability and limitations of MT to resolve features on different scales. Here we present synthetic modelling of conductive, narrow, near-vertical faults 500 m to 1500 m wide, and show that a station spacing of around 14 km across strike is sufficient to resolve these into the upper crust. However, the vertical extent of these features is not well constrained, with near-vertical planar features commonly resolved as two separate features. This highlights the need for careful interpretation of anomalies in MT inversion. In particular, in an exploration scenario, it is important to consider that a lack of interconnectivity between a lower crustal/upper mantle conductor and conductors higher up in the crust and the surface might be apparent only, and may not reflect reduced mineral prospectivity. Appeared in Exploration Geophysics Journal 05 Dec 2022