From 1 - 10 / 744
  • The cartographic collection of the Doc Fisher Geoscience Library consists of the maps and air photos created or acquired by agency staff since the formation of BMR in 1946. This includes maps produced by agencies which have merged with these over the years, such as AUSLIG. Maps held include: Australian geological map series (1:250,000, 1:100,000 and the 1 mile series); topographic maps produced by NATMAP and its predecessors (1:250,000, 1:100,000 and 1:50,000) - latest editions only; various Australian geochemical, geophysical and other thematic maps; geoscience map series from other countries acquired on an exchange basis, including some with accompanying explanatory notes; Non-series maps acquired by donation or exchange; atlases. The Air photos are predominantly those used for mapping Australia and, to a lesser extent, Papua New Guinea and Antarctica, by BMR/AGSO from the 1940s to the 1980s. Geographical coverage of the sets is not complete, but many individual photos are unique in that they have pin points, overlays or other markings made by teams in the field. The Papua New Guinea photographs in the collection may, in many cases, be the only existing copies. Flight diagrams are also held for many (but not all) sets of air photos. Some other related materials, such as montages of aerial photographs (orthophotos), are also represented in the collection.

  • Large areas of prospective North and North-East Queensland have been surveyed by airborne hyperspectral sensor, HyMap, and airborne geophysics as part of the 'Smart' exploration initiative by the Geological Survey of Queensland. In particular, 25000 km2 of hyperspectral mineral and compositional map products, at 4.5 m spatial resolution, have been generated and made available via the internet. In addition, more than 130 ASTER scenes were processed and merged to produce broad scale mapping of mineral groups (Thomas et al, 2008). Province-scale, accurate maps of mineral abundances and minerals chemistries were generated for North Queensland as a result of a 2 year project starting in July 2006 which involved CSIRO Exploration and Mining, the Geological Survey of Queensland (GSQ), Geoscience Australia, James Cook University, and Curtin University. Airborne radiometric data acquired over the same North Queensland Mt Isa - Cloncurry areas as the hyperspectral surveys, had been acquired at flight line spacing of 200 metre. Such geophysical radiometric data provides a useful opportunity to compare the mineral mapping potential of both techniques, for a wide range of geological and vegetated environments. In this study, examples are described of soil mapping within the Tick Hill area, and geological / exploration mapping within the Mt Henry and Suicide Ridge prospects of North Queensland.

  • Joint Release of the National ASTER geoscience maps at IGC The ASTER (Advanced Spaceborne Thermal Emission and Reflectance Radiometer) Geoscience Maps are the first public, web-accessible, continent-scale product release from the ASTER Global Mapping data archive. The collaborative Australian ASTER Initiative represents a successful multi-agency endeavour, led by the Western Australian Centre of Excellence for 3D Mineral Mapping (C3DMM) at CSIRO, Geoscience Australia and the State and Territory government geological surveys of Australia, along with other national and international collaborators. National ASTER geoscience map These geoscience maps are released in GIS format as 1:1M map-sheet tiles, from 3,000 ASTER scenes of 60x60km. Each scene was cross-calibrated and validated using independent Hyperion satellite imagery. The new ASTER geoscience products range in their application from local to continental scales, and their uses include mapping of soils for agricultural and environmental management, such as estimating soil loss, dust management and water catchment modelling. They will also be useful for resource exploration, showing host rock, alteration and regolith mineralogy and providing new mineral information at high spatial resolution (30m pixel). This information is not currently available from other pre-competitive geoscience data.

  • Monitoring changes in the spatial distribution and health of biotic habitats requires spatially extensive surveys repeated through time. Although a number of habitat distribution mapping methods have been successful in clear, shallow-water coastal environments (e.g. aerial photography and Landsat imagery) and deeper (e.g. multibeam and sidescan sonar) marine environments, these methods fail in highly turbid and shallow environments such as many estuarine ecosystems. To map, model and predict key biotic habitats (seagrasses, green and red macroalgae, polychaete mounds [Ficopamatus enigmaticus] and mussel clumps [Mytilus edulis]) across a range of open and closed estuarine systems on the south-west coast of Western Australia, we integrated post-processed underwater video data with interpolated physical and spatial variables using Random Forest models. Predictive models and associated standard deviation maps were developed from fine-scale habitat cover data. Models performed well for spatial predictions of benthic habitats, with 79-90% of variation explained by depth, latitude, longitude and water quality parameters. The results of this study refine existing baseline maps of estuarine habitats and highlight the importance of biophysical processes driving plant and invertebrate species distribution within estuarine ecosystems. This study also shows that machine-learning techniques, now commonly used in terrestrial systems, also have important applications in coastal marine ecosystems. When applied to video data, these techniques provide a valuable approach to mapping and managing ecosystems that are too turbid for optical methods or too shallow for acoustic methods.

  • The Pine Creek AEM survey was flown over the Pine Creek Orogen in the Northern Territory during 2008 and 2009 as part of the Australian Government's Onshore Energy Security Program at Geoscience Australia (GA). The survey covers an area of 74,000 km2 from Darwin to Katherine in the Northern Territory which hosts several world class deposits, including the Ranger Uranium Mine, Nabarlek, Mt Todd, Moline and Cosmo Howley. Aimed at regional mapping, uranium exploration, reducing exploration risk and promoting exploration activity, the program worked closely with industry partners to infill wide regional line spacing (5km) with deposit scale line spacing (less than 1km). The survey results are relevant in exploration for a variety of commodities and resources, including uranium, copper, lead, zinc, gold, nickel and groundwater. Geoscience Australia's interpretation products include sample-by-sample layered earth inversion products comprising located data, geo-located conductivity depth sections, depth slice grids, elevation slice grids, inversion report and an interpretation report. All data and products are available from GA as well as the Northern Territory Geological Survey Geophysical Image Web Server.

  • Bathurst NSW regolith-landforms map 1:250 000

  • Displays the coverage of publicly available digital gamma-ray spectrometric data. The map legend is coloured according to the line spacing of the survey with broader line spacings (lower resolution surveys) displayed in shades of blue. Closer line spacings (higher resolution surveys are displayed in red, purple and coral.

  • 2nd edition Available as a GA Library resource.

  • The coastal zone is arguably the most difficult geographical region to capture as data because of its dynamic nature. Yet, coastal geomorphology is fundamental data required in studies of the potential impacts of climate change. Anthropogenic and natural structural features are commonly mapped individually, with their inherent specific purposes and constraints, and subsequently overlain to provide map products. This coastal geomorphic mapping project centered on a major coastal metropolitan area between Lake Illawarra and Newcastle, NSW, has in contrast classified both anthropogenic and natural geomorphological features within the one dataset to improve inundation modelling. Desktop mapping was undertaken using the Australian National Coastal Geomorphic (Polygon) Classification being developed by Geoscience Australia and supported by the Department of Climate Change. Polygons were identified from 50cm and 1m aerial imagery. These data were utilized in parallel with previous maps including for example 1:25K Quaternary surface geology, acid sulphate soil risk maps as well as 1:100K bedrock geology polygon maps. Polygons were created to capture data from the inner shelf/subtidal zone to the 10 m contour and include fluvial environments because of the probability of marine inundation of freshwater zones. Field validation was done as each desktop mapping section was near completion. This map has innovatively incorporated anthropogenic structures as geomorphological features because we are concerned with the present and future geomorphic function rather than the past. Upon completion it will form part of the National Coastal Geomorphic Map of Australia, also being developed by Geoscience Australia and utilized in conjunction with Smartline.

  • This dataset maps the geomorphic habitat environments (facies) for 88 Tasmanian coastal waterways. The classification system contains 11 easily identifiable and representative environments: Barrier/back-barrier, Bedrock, Central Basin, Channel, Coral, Flood- and Ebb-tide Delta, Fluvial (bay-head) Delta, Intertidal Flats, Rocky Reef, Saltmarsh/Saltflat, Tidal Sand Banks (and Unassigned). These types represent habitats found across all coastal systems in Australia. The majority of near pristine estuaries in Tasmania are located in the south and west of the State and on Cape Barren Island, according to the Department of Primary Industries, Water and Environment.