From 1 - 10 / 297
  • Open Geospatial Consortium (OGC) web services offer a cost efficient technology that permits transfer of standardised data from distributed sources, removing the need for data to be regularly uploaded to a centralised database. When combined with community defined exchange standards, the OGC services offer a chance to access the latest data from the originating agency and return the data in a consistent format. Interchange and mark-up languages such as the Geography Markup Language (GML) provide standard structures for transferring geospatial information over the web. The IUGS Commission for the Management and Application of Geoscience Information (CGI) has an on-going collaborative project to develop a data model and exchange language based on GML for geological map and borehole data, the GeoScience Mark-up Language (GeoSciML). The Australian Government Geoscience Information Committee (GGIC) has used the GeoSciML model as a basis to cover mineral resources (EarthResourceML), and the Canadian Groundwater Information Network (GIN) has extended GeoSciML into the groundwater domain (GWML). The focus of these activities is to develop geoscience community schema that use globally accepted geospatial web service data exchange standards.

  • This Record describes the scope of the Great Artesian Basin (GAB) Automatic Data Processing System and outlines Stage 1(Data Transcription), and describes Stage 2, the checking of coded data. The subject of this record is the permanent storage, updating, and retrieval for processing of the data passed through Stages 1 and 2. The system described was developed for application to drill stem test (DST; Formation Test) data by G.E. Seidel (BMR) and then extended to suit the general GAB data by G. Krebs (BRGM).

  • Progress report for Milestone 8 of Palaeovalley Groundwater project. Report prepared by Geoscience Australia for delivery to National Water Commission.

  • This Geocat record is a CD of presentations delivered as part of the 4th Technical Advisory Group workshop for the Palaeovalley Groundwater Project. The workshop was held in Canberra at Geoscience Australia on 5 and 6 April 2011 and involved ~20 people including GA staff and invited guests from state government water resource and geological survey organisations in SA, NT and WA. The CD has been compiled as a record of the workshop and will be delivered to the workshop participants as a record of the event.

  • Under the Community Stream Sampling and Salinity Mapping Project, the Australian Government through the Department of Agriculture, Fisheries and Forestry and the Department of Environment and Heritage, acting through Bureau of Rural Sciences, funded an airborne electromagnetic (AEM) survey to provide information in relation to land use questions in selected areas along the River Murray Corridor (RMC). The proposed study areas and major land use issues were identified by the RMC Reference Group at its inception meeting on 26th July, 2006. This report has been prepared to facilitate recommendations on the Lindsay-Wallpolla study area. The work was developed in consultation with the RMC Technical Working Group (TWG) to provide a basis for the RMC Reference Group and other stake holders to understand the value and application of AEM data to the study area. This understanding, combined with the Reference Group's assessment of the final results and taking in account policy and land management issues, will enable the Reference Group to make recommendations to the Australian Government.

  • The use of airborne electromagnetics (AEM) for hydrogeological investigations often requires high resolution data. Optimisation of AEM data therefore requires careful consideration of AEM system suitability, calibration, validation and inversion methods. In the Broken Hill managed Aquifer Recharge (BHMAR) project, the helicopter-borne SkyTEM transient EM system was selected after forward modelling of system responses and assessment of test line data over potential targets. The survey involved acquisition of 31,834 line km of data over an area of 7,500 km2 of the River Darling Floodplain. Initial FAI inversions provided within 48 hours of acquisition were used to target 100 sonic and rotary mud holes for calibration and validation. A number of different (Laterally and Spatially Constrained) inversions of the AEM data were carried out, with refinements made as additional information on vertical and lateral constraints became available. Finally, a Wave Number Domain Approximate Inversion procedure with a 1D multi-layer model and constraints in 3D (including boreholes), was used to produce a 3D conductivity model. This inversion procedure only takes days to run, enabling rapid trialling to select the most appropriate vertical and horizontal constraints. Using this approach has produced reliable, quantitative estimates of the 3D conductivity structure, and enabled identification of a diverse range of MAR options and groundwater resources. The hydrogeological complexity revealed by AEM mapping greatly improves the parameterisation of groundwater models, and provides a framework for understanding complex hydrogeological and hydrogeochemical processes that are critical to assessment of a range of MAR, surface water and groundwater extraction options.

  • Steady progress with the first phase of the Projectcontinued. Two highlights during the period described in this report are first, the design and implementation of a preliminary groundwater model of the whole Basin, and second, the field inspection of parts of the Basin in South Australia, Victoria and New South Wales undertaken by Project workers during October 1981 mainly to discuss stratigraphic correlation problems. The Steering Committee met in Sydney on 5th November, 1981.