AEM
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
The Pine Creek AEM survey was flown over the Pine Creek Orogen in the Northern Territory during 2008 and 2009 as part of the Australian Government's Onshore Energy Security Program at Geoscience Australia (GA). The survey provides pre-competitive data for enhancing uranium and other mineral exploration. Flight line spacing was 1666 m and 5000 m covering an area of 74,000 km2 (roughly the size of Tasmania) which hosts several uranium deposits, including the Ranger Uranium Mine, Rum jungle, Ranger and Nabarlek. The region is also prospective for metals including copper, lead, zinc, gold, tin, rare earths, tantalum, tungsten, molybdenum and nickel. The Pine Creek AEM survey comprises three areas: Kombolgie to the east of Kakadu National Park; Woolner Granite near Darwin; and, Rum Jungle to the west of Kakadu National Park. Collaboration with the National Water Commission and eight private infill companies brought an additional investment of approximately $1 m into the survey, with follow-up exploration equal to or exceeding this amount. The Woolner Granite and Rum Jungle survey area data were acquired using the TEMPEST fixed wing AEM system. The acquisition and processing were carried out by Fugro Airborne Surveys Pty. Ltd., under contract to GA. The Woolner Granite and Rum Jungle surveys were flown between August 2008 and May 2009 and the data were publicly released by GA in July and September 2009 respectively. In the Kombolgie survey area, the data were acquired a by Geotech Airborne Pty. Ltd. using the VTEM helicopter AEM system. The survey was flown between August and November of 2008, and additional calibration flights relating to the survey were flown in April 2009. The Kombolgie data were publicly released by GA in December 2009.
-
The Frome airborne electromagnetic (AEM) survey is the largest of three regional AEM surveys flown under the 5-year Onshore Energy Security Program (OESP) by Geoscience Australia (GA). The aim of the survey is to reduce risk and stimulate exploration investment for uranium by providing reliable pre-competitive data. The Frome AEM survey was flown between 22 May and 2 November 2010, is approximately 95 450 km2 in area and collected 32 317 line km of new data at an average flying height of 100 m. The Frome AEM survey covers the Marree (pt), Callabonna (pt), Copley (pt), Frome (pt), Parachilna (pt), Curnamona, Olary and Chowilla (pt) 1:250 000 standard map sheets in South Australia and was flown largely at 2.5 km line spacing, with the northern portion flown at 5 km line spacing. GA partnered with, the Department of Primary Industries and Resources South Australia and an industry consortium. The survey results indicate a depth of investigation (DOI - depth of reliable signal penetration) of up to 400 m in areas of thin cover and resistive basement (e.g., Adelaidean rocks in the Olary Ranges). In Cenozoic - Mesozoic sediments in the Frome Embayment and the Murray Basin the DOI is up to 100-150 m. A range of under-cover features are revealed, including (but not limited to): extensions to known palaeovalley networks in the Frome Embayment; the under-cover extent of the Benagerie Ridge; regional faults in the Frome Embayment and Murray Basin; folded and faulted Neoproterozoic rocks in the Adelaide Fold Belt; Cenozoic - Mesozoic stratigraphy in the Frome Embayment; neotectonic offsets in the Lake Eyre Basin; conductive Neoproterozoic rocks associated with copper-gold mineralisation; and, coal-bearing structures in the Leigh Creek area, as well as groundwater features.
-
Predictive maps of the subsurface can be generated when geophysical datasets are modelled in 2D and 3D using available geological knowledge. Inversion is a process that identifies candidate models which explain an observed dataset. Gravity, magnetic, and electromagnetic datasets can now be inverted routinely to derive plausible density, magnetic susceptibility, or conductivity models of the subsurface. The biggest challenge for such modelling is that any geophysical dataset may result from an infinite number of mathematically-plausible models, however, only a very small number of those models are also geologically plausible. It is critical to include all available geological knowledge in the inversion process to ensure only geologically plausible physical property models are recovered. Once a set of reasonable physical property models are obtained, knowledge of the physical properties of the expected rocks and minerals can be used to classify the recovered physical models into predictive lithological and mineralogical models. These predicted 2D and 3D maps can be generated at any scale, for Government-funded precompetitive mapping or drilling targets delineation for explorers.
-
Under the Community Stream Sampling and Salinity Mapping Project, the Australian Government through the Department of Agriculture, Fisheries and Forestry and the Department of Environment and Heritage, acting through Bureau of Rural Sciences, funded an airborne electromagnetic (AEM) survey to provide information in relation to land use questions in selected areas along the River Murray Corridor (RMC). The proposed study areas and major land use issues were identified by the RMC Reference Group at its inception meeting on 26th July, 2006. This report has been prepared to facilitate recommendations on the Lindsay-Wallpolla study area. The work was developed in consultation with the RMC Technical Working Group (TWG) to provide a basis for the RMC Reference Group and other stake holders to understand the value and application of AEM data to the study area. This understanding, combined with the Reference Group's assessment of the final results and taking in account policy and land management issues, will enable the Reference Group to make recommendations to the Australian Government.
-
The use of airborne electromagnetics (AEM) for hydrogeological investigations often requires high resolution data. Optimisation of AEM data therefore requires careful consideration of AEM system suitability, calibration, validation and inversion methods. In the Broken Hill managed Aquifer Recharge (BHMAR) project, the helicopter-borne SkyTEM transient EM system was selected after forward modelling of system responses and assessment of test line data over potential targets. The survey involved acquisition of 31,834 line km of data over an area of 7,500 km2 of the River Darling Floodplain. Initial FAI inversions provided within 48 hours of acquisition were used to target 100 sonic and rotary mud holes for calibration and validation. A number of different (Laterally and Spatially Constrained) inversions of the AEM data were carried out, with refinements made as additional information on vertical and lateral constraints became available. Finally, a Wave Number Domain Approximate Inversion procedure with a 1D multi-layer model and constraints in 3D (including boreholes), was used to produce a 3D conductivity model. This inversion procedure only takes days to run, enabling rapid trialling to select the most appropriate vertical and horizontal constraints. Using this approach has produced reliable, quantitative estimates of the 3D conductivity structure, and enabled identification of a diverse range of MAR options and groundwater resources. The hydrogeological complexity revealed by AEM mapping greatly improves the parameterisation of groundwater models, and provides a framework for understanding complex hydrogeological and hydrogeochemical processes that are critical to assessment of a range of MAR, surface water and groundwater extraction options.
-
Legacy product - no abstract available
-
Presently, groundwater, through direct extraction (>30%), and indirectly through replenishing our river systems (>20%), contributes over 50% of Australia's water supplies. Groundwater (and surface water) management in Australia faces intensifying pressures, from population expansion and increasing surface water scarcity in southern Australia posed by extreme drought and future climate change. Recently, and significantly, new additional pressures on groundwater systems have emerged through the rapid expansion of new energy sources (coal seam gas, uranium, geothermal and carbon geo-sequestration) and a rapid expansion of the minerals resource sector (including iron ore). The complexity and conflicts in the nexus between water, new energy, minerals and food and fibre security require innovative approaches in science, management and policy. This is particularly the case in the context of Australia's inherent vulnerability to climate change and the likely emergence of a carbon economy. Quantification of the hydrological cycle and catchment water balances in Australia is limited by a lack of spatial and temporal data. While substantial effort has been put into developing approaches for the mapping and quantification of surface hydrology, resources and processes, significant uncertainty remains in the knowledge of the size of Australian groundwater resources, their locations, rates of recharge, connectivity with surface waters and rates of use or depletion. Recently completed groundwater audits and regional groundwater investigations have made valuable assessments of resources based on limited available data, but have not adequately quantified the large uncertainties in groundwater model predictions and resource assessments, or identified where and what data and knowledge is required to improve these assessments.
-
The National Geochemical Survey of Australia project represents an essential component of the Australian Government's Onshore Energy Security Initiative. The national geochemical survey involves the use of field-tested methods for collection and analysis of transported regolith samples representative of catchments covering most of Australia. The project is a collaboration between Geoscience Australia and State and Northern Territory geoscience agencies, which will provide an internally consistent geochemical dataset useful for calibration and ground-truthing of airborne radiometrics surveys. The survey also will help to fill gaps in current airborne radiometrics and geochemical coverages of Australia, provide multi-element characterisation and ranking of radiometric anomalies and aid in first-order investigation of the nature of geothermal hot-spots. As a result it will support and add value to numerous other Onshore Energy Security Initiative projects and have wider applications in mineral exploration and in environmental assessment and management. This report details the methodology underpinning the determination of the theoretical sampling points using terrain and hydrological analysis; and the protocols for sample collection. It will be used for knowledge transfer during training sessions for the State and Northern Territory field parties who also will receive field equipment and consumables which will ensure there is consistent sampling throughout the project. A digital data entry template has been designed to enable efficient and consistent in-field data capture, which also will streamline data entry into Geoscience Australia's corporate databases.
-
The record is a presentation given by Adrian Fisher to staff of the Aditya-Birla Nifty copper mine and to staff at the Geological Survey of Western Australia, August 2007. It describes the planning behind the Paterson AEM survey, to be acquired in 2007-2008.
-
An integrated multi-scale approach has been used to map and assess shallow (<100m) aquitards in unconsolidated alluvial sediments beneath the Darling River floodplain. The study integrated a regional-scale (7,500km2) airborne electromagnetics (AEM) survey with targeted ground electrical surveys, downhole lithological and geophysical (induction, gamma and nuclear magnetic resonance (NMR)) logging, hydraulic testing and hydrogeochemistry obtained from a 100 borehole (7.5km) sonic and rotary drilling program. Electrical conductivity mapping confirmed a relatively continuous lacustrine Blanchetown Clay aquitard, mostly below the water table. The Blanchetown Clay is typically 5-10m thick with a maximum thickness of 18m but, importantly, can also be absent. Variations (up to 60m) in the elevation of the aquitard top surface are attributed partly to neotectonics, including warping, discrete fault offsets, and regional tilting. Hydrograph responses in overlying and underlying aquifers, laboratory permeameter measurements on cores, and hydrogeochemical data demonstrate where the Blanchetown Clay acts as an effective aquitard. In these areas, the AEM and induction logs can show an electrical conductivity (EC) decrease towards the centre of the clay rich aquitard, contrary to the typical response of saturated clays. Even though the aquitard centre is below the watertable, core moisture data and NMR total water logs indicate very low water content, explaining the relatively low EC response. The NMR logs also indicate that the clay aquitard is partially saturated both from the top and the bottom. This suggests very low hydraulic conductivities for the aquitard resulting in negligible vertical leakage in these areas. This is supported by core permeameter measurements of less than 10-12 m/s.