From 1 - 10 / 548
  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSV Ballarat Vic magnetic grid geodetic has a cell size of 0.0005 degrees (approximately 49m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1986 by the VIC Government, and consisted of 11552 line-kilometres of data at 200m line spacing and 70m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. . This Gawler Craton Airborne Survey Merge Magnetics - TMI pseudocolor image (AWAGS) is a pseudocolour image of the TMI grid of the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 survey. The grid used to produce this image has a cell size of 0.0004 degrees (approximately 41m). The data used to produce the TMI grid was acquired in 2017-2019 by the SA Government, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid. This survey grid is essentially levelled to AWAGS. This pseudocolour image shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The image can also be used to locate structural features such as dykes.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Gawler Craton Airborne Survey Merge Magnetics - TMI RTP colourindex image is a pseudocolour image of the TMI grid of the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 survey. This grid used to produce this image has a cell size of 0.00042 degrees (approximately 40m). The data used to produce the TMI grid was acquired in 2017-2019 by the SA Government, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid. This survey grid is essentially levelled to AWAGS. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey. This pseudocolour image shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The image can also be used to locate structural features such as dykes.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Wangaratta North South magnetic grid geodetic has a cell size of 0.00042 degrees (approximately 42m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1996 by the VIC Government, and consisted of 84782 line-kilometres of data at a line spacing between 200m and 400m, and 80m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Nabberu combined magnetic grid geodetic has a cell size of 0.00083 degrees (approximately 88m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1996 by the WA Government, and consisted of 44375 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Middle Pilbara Marble Bar Goldsworthy magnetic has a cell size of 0.00083 degrees (approximately 89m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1996 by the WA Government, and consisted of 107620 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Ararat Ballarat magnetic grid geodetic has a cell size of 0.00083 degrees (approximately 83m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1990 by the VIC Government, and consisted of 51328 line-kilometres of data at a line spacing between 200m and 400m, and 100m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This St Arnaud magnetic grid geodetic has a cell size of 0.00042 degrees (approximately 42m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1990 by the VIC Government, and consisted of 18970 line-kilometres of data at a line spacing between 200m and 400m, and 100m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Hann River Walsh magnetic grid geodetic has a cell size of 0.00083 degrees (approximately 91m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 1991 by the QLD Government, and consisted of 61810 line-kilometres of data at 400m line spacing and 100m terrain clearance.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This GSWA Crossland Noonkanbah East Canning 1 GA Canning Basin Onshore Magnetic Grid Geodetic has a cell size of 0.00083 degrees (approximately 90m). The units are in nanoTesla (or nT). The data used to produce this grid was acquired in 2007 by the WA Government, and consisted of 197185 line-kilometres of data at a line spacing between 400m and 800m, and 60m terrain clearance.