From 1 - 10 / 6004
  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. These line dataset from the Murrindal, Vic, 1996 VIMP Survey (GSV3060) survey were acquired in 1995 by the VIC Government, and consisted of 15589 line-kilometres of data at 200m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.

  • Categories  

    Gravity data measure small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This National Gravity Compilation 2019 includes airborne (CSCBA 1VD) is the first vertical derivative of the complete spherical cap Bouguer anomaly grid for the 2019 Australian National Gravity Grids B series. This gravity survey was acquired under the project No. 202008. The grid has a cell size of 0.00417 degrees (approximately 435m). A Fast Fourier Transform (FFT) process was applied to the original grid to calculate the first vertical derivative grid.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The Geological Survey of South Australia commissioned the Gawler Craton Airborne Survey (GCAS) as part of the PACE Copper initiative. The airborne geophysical survey was flown over parts of the Gawler Craton in South Australia. The program was designed to capture new baseline geoscientific data to provide further information on the geological context and setting of the area for mineral systems (http://energymining.sa.gov.au/minerals/geoscience/pace_copper/gawler_craton_airborne_survey). This radiometric uranium image has a cell size of 0.0004 degrees (approximately 41m) and shows uranium element concentration of the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 in units of parts per million (or ppm). Noise-adjusted singular value decomposition (NASVD) has been applied to the data. NASVD is a spectral component analysis procedure for the removal of noise from gamma-ray spectra. The data used to produce this image was acquired in 2019 by the SA Government, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The Geological Survey of South Australia commissioned the Gawler Craton Airborne Survey (GCAS) as part of the PACE Copper initiative. The airborne geophysical survey was flown over parts of the Gawler Craton in South Australia. The program was designed to capture new baseline geoscientific data to provide further information on the geological context and setting of the area for mineral systems (http://energymining.sa.gov.au/minerals/geoscience/pace_copper/gawler_craton_airborne_survey). This radiometric thorium image has a cell size of 0.0004 degrees (approximately 41m) and shows thorium element concentration of the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 in units of parts per million (or ppm). Noise-adjusted singular value decomposition (NASVD) has been applied to the data. NASVD is a spectral component analysis procedure for the removal of noise from gamma-ray spectra. The data used to produce this image was acquired in 2019 by the SA Government, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • Categories  

    The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The Geological Survey of South Australia commissioned the Gawler Craton Airborne Survey (GCAS) as part of the PACE Copper initiative. The airborne geophysical survey was flown over parts of the Gawler Craton in South Australia. The program was designed to capture new baseline geoscientific data to provide further information on the geological context and setting of the area for mineral systems (http://energymining.sa.gov.au/minerals/geoscience/pace_copper/gawler_craton_airborne_survey). nThis radiometric potassium image has a cell size of 0.0004 degrees (approximately 41m) and shows potassium element concentration of the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 in units of percent (or %). The data used to produce this image was acquired in 2019 by the SA Government, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. . This Gawler Craton Airborne Survey Merge Magnetics - TMI pseudocolor image (AWAGS) is a pseudocolour image of the TMI grid of the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 survey. The grid used to produce this image has a cell size of 0.0004 degrees (approximately 41m). The data used to produce the TMI grid was acquired in 2017-2019 by the SA Government, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid. This survey grid is essentially levelled to AWAGS. This pseudocolour image shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The image can also be used to locate structural features such as dykes.

  • Categories  

    Digital Elevation data record the terrain height variations from the processed point- or line-located data recorded during a geophysical survey. This Gawler Craton Airborne Survey Merge Digital Elevation Model - ground elevation geoid image is elevation data for the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 relative to the geoid vertical datum. These data were acquired during project No. 5000 for the geological survey of SA, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance. The grid used to produce this image has a cell size of 0.0004 degrees (approximately 41m) and contains the ground elevation relative to the geoid for the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019. It represents the vertical distance from a location on the Earth's surface to the geoid. The data are given in units of meters. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose.

  • Categories  

    Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Gawler Craton Airborne Survey Merge Magnetics - TMI RTP colourindex image is a pseudocolour image of the TMI grid of the Gawler Craton Airborne Survey Magnetic Radiometric and DEM Merge, SA, 2017-2019 survey. This grid used to produce this image has a cell size of 0.00042 degrees (approximately 40m). The data used to produce the TMI grid was acquired in 2017-2019 by the SA Government, and consisted of 1660000 line-kilometres of data at 200m line spacing and 60m terrain clearance. To constrain long wavelengths in the grid, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey grid. This survey grid is essentially levelled to AWAGS. The data has had a variable reduction to the pole applied to centre the magnetic anomaly over the magnetised body. The VRTP processing followed a differential reduction to pole calculation up to 5th order polynomial. Magnetic inclination and declination were derived from the IGRF-11 geomagnetic reference model using a data representative date and elevation representative of the survey. This pseudocolour image shows the magnetic response of subsurface features with contrasting magnetic susceptibilities. The image can also be used to locate structural features such as dykes.

  • Categories  

    Digital Elevation data record the terrain height variations from the processed point- or line-located data recorded during a geophysical survey. This Frome elevation grid geodetic is elevation data for the Frome, SA, Broken Hill Exploration Initiative, 1995. This survey was acquired under the project No. 641 for the geological survey of SA. The grid has a cell size of 0.00083 degrees (approximately 86m). This grid contains the ground elevation relative to the geoid for the Frome, SA, Broken Hill Exploration Initiative, 1995. It represents the vertical distance from a location on the Earth's surface to the geoid. The data are given in units of meters. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose.

  • Categories  

    Digital Elevation data record the terrain height variations from the processed point-located data recorded during a geophysical survey. This National Gravity Compilation 2019 ground elevation ellipsoid grid is elevation data for the 2019 Australian National Gravity Grids A Series. These data were acquired under the project No. 202008. The grid has a cell size of 0.00417 degrees (approximately 435m). This grid contains the ground elevation relative to the ellipsoid for the 2019 Australian National Gravity Grids A Series. It represents the vertical distance from a location on the Earth's surface to the ellipsoid. The data are given in units of meters. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose.