From 1 - 10 / 26
  • Introduction: As part of the Offshore Energy Security Program (2007-2011), Geoscience Australia (GA) undertook an integrated regional study of the deepwater Otway and Sorell basins to improve the understanding of the geology and petroleum prospectivity of the region. The under-explored deepwater Otway and Sorell basins lie offshore of southwestern Victoria and western Tasmania in water depths of 100-4,500 m. The basins developed during rifting and continental separation between Australia and Antarctica from the Cretaceous to Cenozoic and contain up to 10 km of sediment. Significant changes in basin architecture and depositional history from west to east reflect the transition from a divergent rifted continental margin to a transform continental margin. The basins are adjacent to hydrocarbon-producing areas of the Otway Basin, but despite good 2D seismic data coverage, they remain relatively untested and their prospectivity poorly understood. The deepwater (>500 m) section of the Otway Basin has been tested by two wells, of which Somerset 1 recorded minor gas shows. Three wells have been drilled in the Sorell Basin, where minor oil shows were recorded near the base of Cape Sorell 1. Structural framework: Using an integrated approach, new aeromagnetic data, open-file potential field, seismic and exploration well data were used to develop new interpretations of basement structure and basin architecture. This analysis has shown that reactivated north-south Paleozoic structures, particularly the Avoca-Sorell Fault System, controlled the transition from extension through transtension to a dominantly strike-slip tectonic regime along this part of the southern margin. Depocentres to the west of this structure are large and deep in contrast to the narrow elongate depocentres to its east. ...

  • Numerous disparate and, in many cases, mutually inconsistent models for the Proterozoic amalgamation and evolution of the Australian continent have been published over the past ~15 years. Most of the models involve large-scale relative movements between pre-existing cratonic blocks, as well as accretion of relatively juvenile crust to cratonic margins, via modern style subduction-tectonics. As such, improved geological understanding of the margins of the major constituent cratonic blocks is critical to testing between contrasting evolutionary models. Both the northern and eastern margins of the Gawler Craton, South Australia, are characterised by shear zones with strike lengths of several hundred kilometres; the Karari Shear Zone in the north, and the Kalinjala Shear Zone in the east. Each of these structures preserves evidence for very significant strike-slip motion, but also juxtaposes rocks from different crustal levels indicating significant dip-slip motion. Recently-acquired deep seismic transects across each of these cratonic margins, together with new U-Pb and 40Ar/39Ar geochronology are interpreted to indicate that the Karari Shear Zone was likely active in at least three episodes through the Paleo- and Mesoproterozoic, and currently preserves an overall north-dipping thrust geometry that dates from the early Mesoproterozoic (~1580 - 1450 Ma). In contrast, on the eastern margin of the craton, the northern part of the Kalinjala Shear Zone preserves an east-dipping bulk extensional geometry that dates from the Paleoproterozoic (~1800 - 1740 Ma). The temporal evolution of the margins of the Gawler Craton provides constraints on models invoking tectonic interaction with other parts of Proterozoic Australia.

  • Palaeogeographic reconstructions of the Australian and Antarctic margins based on matching basement structures are commonly difficult to reconcile with those derived from ocean floor magnetic anomalies and plate vectors. Following identification of a previously unmapped crustal-scale structure in the southern part of the Delamerian Orogen (Coorong Shear Zone), a revised plate reconstruction for these margins is proposed. This reconstruction positions the Coorong Shear Zone opposite the Mertz Shear Zone and indicates that structural inheritance had a profound influence on the location and geometry of continental breakup, and ocean fracture development. Previously, the Mertz Shear Zone has been correlated with the Proterozoic Kalinjala Mylonite Zone in the Gawler craton but this means that Australia is positioned 300-400 km too far east relative to Antarctica prior to breakup. Differences in the orientation of late Jurassic-Cretaceous basin-bounding normal faults in the Bight and Otway basins further suggest that extensional strain during basin formation was partitioned across the Coorong Shear Zone following an earlier episode of strike-slip faulting on a northwest-striking continental transform fault (Trans-Antarctic Shear).

  • The Mulgathing Complex within the Gawler Craton, South Australia, preserves evidence for magmatism, sedimentation and metamorphism spanning the transition between the Neoarchean and Paleoproterozoic (c. 2555 - 2410 Ma). Prior to this study, limited data has been available to constrain the timing of these tectonothermal events. Consequently there has been uncertainty regarding the timing of sedimentation and magmatism relative to the pervasive deformation and metamorphism that has affected this region. We report SHRIMP zircon U-Pb dating of metamorphosed sedimentary and magmatic rocks from the Mulgathing Complex, central Gawler Craton. The data show that etasedimentary gneisses (Christie Gneiss) preserve an inferred maximum depositional age of ca. 2480 Ma, in contrast to previous studies that have suggests deposition had occurred ca. 2510 Ma. The oldest metamorphic zircons in our data are ca. 2465 Ma, thus indicating there was a time interval of less than 15 Myr between the cessation of sedimentation and the occurrence of metamorphism at high metamorphic grade. Metamorphic zircons have a range of ages, from ca. 2465 and ca. 2415 Ma, consistent with a period of ca. 50 Myr during which high-grade metamorphism occurred. Mafic and felsic intrusions have ages that range from ca. 2520 Ma to 2460 Ma, indicating magmatism occurred during sedimentation and continued during the early stages of metamorphism and deformation of these rocks. The abundance of mafic intrusions and its temporal overlap with the sedimentation within the Mulgathing Complex may indicate that the overall tectonic regime involved some form of iithospheric extension. The Mulgathing Complex shows temporal similarities with only a few terranes in particular the Saask Craton, Canada, regions within the North China Craton, and to some extent cratonic regions within northern Australia.

  • The evolution of the Paleo- and Mesoproterozoic of Australia is controversial. Early tectonic models were largely autochthonous, in part driven by the chemical characteristics of Proterozoic felsic magmatism: overwhelmingly potassic, often with elevated Th and U contents, and with evolved isotopic signatures, consistent with crustal sources and the implication they were not generated within continental arcs. This model has been increasingly challenged over the last 30 years, driven by the recognition of the diversity of Proterozoic magmatism, of linear magmatic belts often with subduction-compatible geochemistry and juvenile isotopic signatures, and of across-strike trends in isotope signatures, all consistent with continental margin processes. These, and other geological evidence for crustal terranes, suggest subduction-related tectonic regimes and collisional orogenesis. Current tectonic models for the Australia Proterozoic invoke such processes with varying number of continental fragments and arcs, related to assembly/break-up of the Nuna Supercontinent. Problems still exist however as the observations of early workers still largely hold-much Proterozoic magmatism was intracratonic, and interpreted backarc magmatism largely lacks obvious related arcs. This has led to more recent hybrid arc-plume models. No one model is completely satisfactory, however, reflecting ambiguity of geochemical data and secular arguments (when did modern-style tectonics actually begin).

  • A short article describing the outcomes of the Tasman Frontier Petroleum Industry Workshop held at Geoscience Australia on 8 and 9 March 2012.

  • This database contains information on faults, folds and other features within Australia that are believed to relate to large earthquakes during the Neotectonic Era (i.e. the past 5-10 million years). The neotectonic feature mapping tool allows you to: * search and explore Australian neotectonic features * create a report for a feature of interest * download feature data and geometries as a csv file or kml file * advise Geoscience Australia if you have any feedback, or wish to propose a new feature.

  • Granulite-facies paragneisses enriched in boron and phosphorus are exposed over a ca. 15 x 5 km area in the Larsemann Hills, East Antarctica. The most widespread are biotite gneisses containing centimeter-sized prismatine crystals, but tourmaline metaquartzite and borosilicate gneisses are richest in B (680-20 000 ppm). Chondrite-normalized REE patterns give two groups: (1) LaN>150, Eu*/Eu < 0.4, which comprises most apatite-bearing metaquartzite and metapelite, tourmaline metaquartzite, and Fe-rich rocks (0.9-2.3 wt% P2O5), and (2) LaN<150, Eu*/Eu > 0.4, which comprises most borosilicate and sodic leucogneisses (2.5-7.4 wt% Na2O). The B- and P-bearing rocks can be interpreted to be clastic sediments altered prior to metamorphism by hydrothermal fluids that remobilized B. We suggest that these rocks were deposited in a back-arc basin located inboard of a Rayner aged (ca. 1000 Ma) continental arc that was active along the leading edge the Indo-Antarctic craton. This margin and its associated back-arc basin developed long before collision with the Australo-Antarctic craton (ca. 530 Ma) merged these rocks into Gondwana and sutured them into their present position in Antarctica. The Larsemann Hills rocks are the third occurrence of such a suite of borosilicate or phosphate bearing rocks in Antarctica and Australia: similar rocks include prismatine-bearing granulites in the Windmill Islands, Wilkes Land, and tourmaline-quartz rocks, sodic gneisses and apatitic iron formation in the Willyama Supergroup, Broken Hill, Australia. These rocks were deposited in analogous tectonic environments, albeit during different supercontinent cycles.

  • Paleoproterozoic-earliest Mesoproterozoic sequences in the Mount Isa region of northern Australia preserve a 200 Myr record (1800-1600 Ma) of intracontinental rifting, culminating in crustal thinning, elevated heat flow and establishment of a North American Basin and Range-style crustal architecture in which basin evolution was linked at depth to bimodal magmatism, high temperature-low pressure metamorphism and the formation of extensional shear zones. This geological evolution and record is amenable to investigation through a combination of mine visits and outcrop geology, and is the principal purpose of this field guide. Rifting initiated in crystalline basement -1840 Ma old and produced three stacked sedimentary basins (1800-1750 Ma Leichhardt, 1730-1670 Ma Calvert and 1670-1575 Ma Isa superbasins) separated by major unconformities and in which depositional conditions progressively changed from fluviatile-lacustrine to fully marine. By 1685 Ma, a deep marine, turbidite-dominated basin existed in the east and basaltic magmas had evolved in composition from continental to oceanic tholeiites as the crust became increasingly thinned and attenuated. Except for an episode of minor deformation and basin inversion at c. 1640 Ma, sedimentation continued across the region until onset of the Isan Orogeny at 1600 Ma.

  • The New Caledonia Trough is a bathymetric depression 200-300 km wide, 2300 km long, and 1.5-3.5 km deep between New Caledonia and New Zealand. In and adjacent to the trough, seismic stratigraphic units, tied to wells, include: Cretaceous rift sediments in faulted basins; Late Cretaceous to Eocene pelagic drape; and ~1.5 km thick Oligocene to Quaternary trough fill that was contemporaneous with Tonga-Kermadec subduction. A positive free-air gravity anomaly of 30 mGal is spatially correlated with the axis of the trough. We model the evolution of the New Caledonia Trough as a two-stage process: (i) trough formation in response to crustal thinning (Cretaceous and/or Eocene); and (ii) post-Eocene trough-fill sedimentation. To best fit gravity data, we find that the effective elastic thickness (Te) of the lithosphere was low (5-10 km) during Phase (i) trough formation and high (20-40 km) during Phase (ii) sedimentation, though we cannot rule out a fairly constant Te of 10 km. The inferred increase in Te with time is consistent with thermal relaxation after Cretaceous rifting, but such a model is not in accord with all seismic-stratigraphic interpretations. If most of the New Caledonia Trough topography was created during Eocene inception of Tonga-Kermadec subduction, then our results place important constraints on the associated lower-crustal detachment process and suggest that failure of the lithosphere did not allow elastic stresses to propagate regionally into the over-riding plate. We conclude that the gravity field places an important constraint on geodynamic models of Tonga-Kermadec subduction initiation.