tectonic
Type of resources
Keywords
Publication year
Topics
-
Numerous disparate and, in many cases, mutually inconsistent models for the Proterozoic amalgamation and evolution of the Australian continent have been published over the past ~15 years. Most of the models involve large-scale relative movements between pre-existing cratonic blocks, as well as accretion of relatively juvenile crust to cratonic margins, via modern style subduction-tectonics. As such, improved geological understanding of the margins of the major constituent cratonic blocks is critical to testing between contrasting evolutionary models. Both the northern and eastern margins of the Gawler Craton, South Australia, are characterised by shear zones with strike lengths of several hundred kilometres; the Karari Shear Zone in the north, and the Kalinjala Shear Zone in the east. Each of these structures preserves evidence for very significant strike-slip motion, but also juxtaposes rocks from different crustal levels indicating significant dip-slip motion. Recently-acquired deep seismic transects across each of these cratonic margins, together with new U-Pb and 40Ar/39Ar geochronology are interpreted to indicate that the Karari Shear Zone was likely active in at least three episodes through the Paleo- and Mesoproterozoic, and currently preserves an overall north-dipping thrust geometry that dates from the early Mesoproterozoic (~1580 - 1450 Ma). In contrast, on the eastern margin of the craton, the northern part of the Kalinjala Shear Zone preserves an east-dipping bulk extensional geometry that dates from the Paleoproterozoic (~1800 - 1740 Ma). The temporal evolution of the margins of the Gawler Craton provides constraints on models invoking tectonic interaction with other parts of Proterozoic Australia.
-
Introduction: As part of the Offshore Energy Security Program (2007-2011), Geoscience Australia (GA) undertook an integrated regional study of the deepwater Otway and Sorell basins to improve the understanding of the geology and petroleum prospectivity of the region. The under-explored deepwater Otway and Sorell basins lie offshore of southwestern Victoria and western Tasmania in water depths of 100-4,500 m. The basins developed during rifting and continental separation between Australia and Antarctica from the Cretaceous to Cenozoic and contain up to 10 km of sediment. Significant changes in basin architecture and depositional history from west to east reflect the transition from a divergent rifted continental margin to a transform continental margin. The basins are adjacent to hydrocarbon-producing areas of the Otway Basin, but despite good 2D seismic data coverage, they remain relatively untested and their prospectivity poorly understood. The deepwater (>500 m) section of the Otway Basin has been tested by two wells, of which Somerset 1 recorded minor gas shows. Three wells have been drilled in the Sorell Basin, where minor oil shows were recorded near the base of Cape Sorell 1. Structural framework: Using an integrated approach, new aeromagnetic data, open-file potential field, seismic and exploration well data were used to develop new interpretations of basement structure and basin architecture. This analysis has shown that reactivated north-south Paleozoic structures, particularly the Avoca-Sorell Fault System, controlled the transition from extension through transtension to a dominantly strike-slip tectonic regime along this part of the southern margin. Depocentres to the west of this structure are large and deep in contrast to the narrow elongate depocentres to its east. ...
-
Speculation is increasing that Proterozoic eastern Australia and western Laurentia represent conjugate rift margins formed during breakup of the NUNA supercontinent and thus share a common history of rift-related basin formation and magmatism. In Australia, this history is preserved within three stacked superbasins formed over 200 Myr in the Mount Isa region (1800-1750 Ma Leichhardt, 1730-1670 Ma Calvert and 1670-1575 Ma Isa), elements of which extend as far east as Georgetown. The Mount Isa basins developed on crystalline basement of comparable (~1840 Ma) age to that underlying the Paleoproterozoic Wernecke Supergroup and Hornby Bay Basin in NW Canada which share a similar tripartite sequence stratigraphy. Sedimentation in both regions was accompanied by magmatism at 1710 Ma, further supporting the notion of a common history. Basin formation in NW Canada and Mount Isa both concluded with contractional orogenesis at ~1600 Ma. Basins along the eastern edge of Proterozoic Australia are characterised by a major influx of sediment derived from juvenile volcanic rocks at ~1655 Ma and a significant Archean input, as indicated by Nd isotopic and detrital zircon data. A source for both these modes is currently not known in Australia although similar detrital zircon populations are documented in the Hornby Bay Basin, and in the Wernecke Supergroup, and juvenile 1660-1620 Ma volcanism occurs within Hornby Bay basin NW Canada. These new data are most consistent with a northern SWEAT-like tectonic reconstruction in a NUNA assembly thus giving an important constraint on continental reconstructions that predate Rodinia.
-
The geological evolution of Australia is closely linked to supercontinent cycles that have characterised the tectonic evolution of Earth, with most geological and metallogenic events relating to the assembly and breakup of Vaalbara, Kenorland, Nuna, Rodinia and Pangea-Gondwana. Australia largely grew from west to east, with two major Archean cratons, the Yilgarn and Pilbara Cratons, forming the oldest part of the continent in the West Australian Element. The centre consists mostly of the largely Paleo-to Mesoproterozoic North and South Australian Elements, whereas the east is dominated by the Phanerozoic-Mesozoic Tasman Element. The West, North and South Australian Elements initially assembled during the Paleoproterozoic amalgamation of Nuna, and the Tasman Element formed as a Paleozoic accretionary margin during the assembly of Gondwana-Pangea. Australia's present position as a relatively stable continent resulted from the break-up of Gondwana. Australia is moving northward toward southeast Asia, probably during the earliest stages of the assembly of the next supercontinent, Amasia. Australia's resources, both mineral and energy, are linked to its tectonic evolution and the supercontinent cycle. Clusters of resources, both in space and time, are associated with Australia's tectonic history and the Earth's supercontinent cycles. Australia's most important gold province is the product of the assembly of Kenorland, whereas its major zinc-lead-silver deposits and iron-oxide-copper-gold deposits formed as Nuna broke up. The diverse metallogeny of the Tasman Element is a product of Pangea-Gondwana assembly and most of Australia's hydrocarbon resources are a consequence of the break-up of this supercontinent.
-
Neotectonism on the eastern Australian passive margin: evidence from the Lapstone Structural Complex
Faults of the Lapstone Structural Complex (LSC) underlie 100 km, and perhaps as much as 160 km, of the eastern range front of the Blue Mountains, west of Sydney, Australia. More than a dozen major faults and monoclinal flexures have been mapped along its extent. Debate continues as to the age of formation of the ~400 m or more of relief relating to the LSC, with estimates ranging from Palaeozoic to Pliocene. The results of an investigation of Mountain Lagoon, a small basin bound on its eastern side by the Kurrajong Fault in the central part of the LSC, favour a predominantly pre-Neogene origin. Drilling on the eastern margin of the lagoon identified 15 m of fluvial, colluvial and lacustrine sediments, overlying shale bedrock. The sediments are trapped behind a sandstone barrier corresponding to the Kurrajong Fault. Dating of pollen grains preserved in sediments at the base of this sediment column suggest that the fault-angle depression began trapping sediment in the Early to Middle Miocene. Strongly heated Permo-Triassic gymnosperm pollen in the same strata provides circumstantial evidence that sediment accumulation post-dates the ca. 18.8 Ma emplacement of the nearby Green Scrub basalt. Our data indicate that only 15 m of the 130 m of throw across the Kurrajong Fault has occurred during the Neogene suggesting a predominantly erosional exhumation origin for current relief at the eastern edge of the Blue Mountains plateau. Sedimentation since the Late Pleistocene appears to have been controlled largely by climatic processes, with tectonism exerting little or no influence.
-
The magma-poor southern Australian rifted margin formed as a result of a long history of lithospheric extension that commenced in the Middle Jurassic. Breakup with Antarctica was diachronous, commencing in the west at ~83 Ma and concluding in the east at ~34 Ma. Initial NW-SE ultra-slow to slow seafloor spreading (83-45 Ma), followed by N-S fast spreading (45 Ma-present), resulted in a broad threefold segmentation of the margin: a long E-W oriented divergent margin segment (Bight-western Otway basins); a NW-SE trending transitional segment (central Otway-Sorell basins); and a N-S oriented transform margin (southern Sorell-South Tasman Rise). Segmentation appears to have been strongly controlled by the pre-existing basement structure. The divergent and western transitional margin segments are characterised by a broad region of lithospheric thinning and thick extensional basin development. In this region, a well-developed ocean-continent transition zone includes basement highs interpreted as exhumed sub-continental lithospheric mantle. Mapping of stratigraphic sequences provides insights into the processes that took place at the evolving margin, including the timing of mantle exhumation, and the diachronous nature of crustal thinning and breakup. The orientation and segmentation of the western and transitional margin segments suggests that initial spreading is likely to have been accommodated by short, extension-parallel transform segments. In the easternmost part of transitional zone, lithospheric thinning is not as marked and the continent-ocean boundary is interpreted to comprise both rift and long transform elements. Here, roughly N-S oriented extension resulted in the development of strongly transtensional basins.
-
Presentation delivered on 8 March 2012 at the Tasman Frontier Petroleum Industry Workshop, 8-9 March 2012, Geoscience Australia, Canberra.
-
The Papua New Guinea (PNG) region has been formed within an oblique convergence zone between the north-northeasterly moving Australian plate and the Pacific plate. The region is subject to most types of tectonic activity, including active folding, faulting and volcanic eruptions and hence is arguably one of the most seismically active regions in the world. Given its high level of seismic activity, PNG would benefit from a dense monitoring network to enhance the efficiency of the earthquake emergency response operations. A program to densify the earthquake monitoring network of PNG by utilizing low-cost sensors has been developed by Geoscience Australia in collaboration with the Department of Mineral Policy and Geohazards Management in PNG. To verify the performance, trial low-cost sensors were co-located with observatory-quality instrumentation for a period of one month in Port Moresby and Rabaul observatories. The comparisons demonstrated comparable recording results across a wide seismic frequency range. Once this proved successful, the first deployments were undertaken recently, with sensors installed in the Bialla International School, Kimbe International School and the Earth Science Division of the University of PNG. Educational institutions are ideal for the installation of these sensors as they can provide guaranteed internet and electricity, allowing for continuous monitoring of earthquakes. The data acquired by these stations will feed into the existing networks for national earthquake and volcano monitoring, thus expanding the national seismic network of PNG. This work is being undertaken as part of the Australian Aid program. Presented at the 2020 Seismological Society of America (SSA) Annual Meeting
-
The New Caledonia Trough is a bathymetric depression 200-300 km wide, 2300 km long, and 1.5-3.5 km deep between New Caledonia and New Zealand. In and adjacent to the trough, seismic stratigraphic units, tied to wells, include: Cretaceous rift sediments in faulted basins; Late Cretaceous to Eocene pelagic drape; and ~1.5 km thick Oligocene to Quaternary trough fill that was contemporaneous with Tonga-Kermadec subduction. A positive free-air gravity anomaly of 30 mGal is spatially correlated with the axis of the trough. We model the evolution of the New Caledonia Trough as a two-stage process: (i) trough formation in response to crustal thinning (Cretaceous and/or Eocene); and (ii) post-Eocene trough-fill sedimentation. To best fit gravity data, we find that the effective elastic thickness (Te) of the lithosphere was low (5-10 km) during Phase (i) trough formation and high (20-40 km) during Phase (ii) sedimentation, though we cannot rule out a fairly constant Te of 10 km. The inferred increase in Te with time is consistent with thermal relaxation after Cretaceous rifting, but such a model is not in accord with all seismic-stratigraphic interpretations. If most of the New Caledonia Trough topography was created during Eocene inception of Tonga-Kermadec subduction, then our results place important constraints on the associated lower-crustal detachment process and suggest that failure of the lithosphere did not allow elastic stresses to propagate regionally into the over-riding plate. We conclude that the gravity field places an important constraint on geodynamic models of Tonga-Kermadec subduction initiation.
-
The evolution of the Paleo- and Mesoproterozoic of Australia is controversial. Early tectonic models were largely autochthonous, in part driven by the chemical characteristics of Proterozoic felsic magmatism: overwhelmingly potassic, often with elevated Th and U contents, and with evolved isotopic signatures, consistent with crustal sources and the implication they were not generated within continental arcs. This model has been increasingly challenged over the last 30 years, driven by the recognition of the diversity of Proterozoic magmatism, of linear magmatic belts often with subduction-compatible geochemistry and juvenile isotopic signatures, and of across-strike trends in isotope signatures, all consistent with continental margin processes. These, and other geological evidence for crustal terranes, suggest subduction-related tectonic regimes and collisional orogenesis. Current tectonic models for the Australia Proterozoic invoke such processes with varying number of continental fragments and arcs, related to assembly/break-up of the Nuna Supercontinent. Problems still exist however as the observations of early workers still largely hold-much Proterozoic magmatism was intracratonic, and interpreted backarc magmatism largely lacks obvious related arcs. This has led to more recent hybrid arc-plume models. No one model is completely satisfactory, however, reflecting ambiguity of geochemical data and secular arguments (when did modern-style tectonics actually begin).