From 1 - 10 / 103
  • The 2011 United Nations climate change meeting in Durban provided an historic moment for CCS. After five years without progress, the Cancun Decision (2010) put in place a work program to address issues of concern before CCS could be included under the Kyoto Protocol's Clean Development Mechanism (CDM) and so allow projects in developing countries to earn Certified Emission Reductions (CERs). The program - consisting submissions, a synthesis report and workshop - concluded with the UNFCCC Secretariat producing draft 'modalities and procedures describing requirements for CCS projects under the CDM. The twenty page 'rulebook' provided the basis for negotiations in Durban. The challenging negotiations, lasting over 32 hours, concluded on 9th December with Parties agreeing to adopt final modalities and procedures for CCS under the CDM. These include provisions for participation requirements (including host country regulations), site selection and characterisation, risk and safety assessment, monitoring, liabilities, financial provision, environmental and social impact assessments, responsibilities for long term non-permanence, and timing of the CDM-project end. A key issue was the responsibility for any seepage of CO2 emissions in the long-term (non-permanence). The modalities and procedures separate responsibility for non-permanence from the liability for any local damages resulting from operation of the storage site. In relation to the former, they allow for the host country to determine the responsible entity, either the host country or the country purchasing the CERs. Note that a CER which incorporates responsibility for seepage will be less attractive to buyers. Thus a standard is established for managing CCS projects in developing countries, which will ensure a high level of environmental protection and is workable for projects. It sets an important precedent for the inclusion of CCS into other support mechanisms.

  • Atmospheric tomography is a monitoring technique that uses an array of sampling sites and a Bayesian inversion technique to simultaneously solve for the location and magnitude of a gaseous emission. Application of the technique to date has relied on air samples being pumped over short distances to a high precision FTIR Spectrometer, which is impractical at larger scales. We have deployed a network of cheaper, less precise sensors during three recent large scale controlled CO2 release experiments; one at the CO2CRC Ginninderra site, one at the CO2CRC Otway Site and another at the Australian Grains Free Air CO2 Enrichment (AGFACE) facility in Horsham, Victoria. The purpose of these deployments was to assess whether an array of independently powered, less precise, less accurate sensors could collect data of sufficient quality to enable application of the atmospheric tomography technique. With careful data manipulation a signal suitable for an inversion study can be seen. A signal processing workflow based on results obtained from the atmospheric array deployed at the CO2CRC Otway experiment is presented.

  • Identification of major hydrocarbon provinces from existing world assessments for hydrocarbon potential can be used to identify those sedimentary basins at a global level that will be highly prospective for CO2 storage. Most sedimentary basins which are minor petroleum provinces and many non-petroliferous sedimentary basins will also be prospective for CO2 storage. Accurate storage potential estimates will require that each basin be assessed individually, but many of the prospective basins may have ranges from high to low prospectivity. The degree to which geological storage of CO2 will be implemented in the future will depend on the geographical and technical relationships between emission sites and storage locations, and the economic drivers that affect the implementation for each source to sink match. CO2 storage potential is a naturally occurring resource, and like any other natural resource there will be a need to provide regional access to the better sites if the full potential of the technology is to be realized. Whilst some regions of the world have a paucity of opportunities in their immediate geographic confines, others are well endowed. Some areas whilst having good storage potential in their local region may be challenged by the enormous volume of CO2 emissions that are locally generated. Hubs which centralize the collection and transport of CO2 in a region could encourage the building of longer and larger pipelines to larger and technically more viable storage sites and so reduce costs due to economies of scale.

  • The Collaborative Research Centre for Greenhouse Gas Technologies (CO2CRC) Program 3.2 Risk Assessment is working toward a risk assessment procedure that integrates risk across the complete CCS system and can be used to meet the needs of a range of stakeholders. Any particular CCS project will hold the interest of multiple stakeholders who will have varied interests in the type of information and in the level of detail they require. It is unlikely that any single risk assessment tool will be able to provide the full range of outputs required to meet the needs of regulators, the general public and project managers; however, in many cases the data and structure behind the outputs will be the same. In using a suite of tools, a well designed procedure will optimize the interaction between the scientists, engineers and other experts contributing to the assessment and will allow for the required information to be presented in a manner appropriate for each stakeholder. Discussions of risk in CCS, even amongst the risk assessment community, often become confused because of the differing emphases on what the risks of interest are. A key question that must be addressed is: 'What questions is the risk analysis trying to answer?' Ultimately, this comes down to the stakeholders, whose interests can be broken into four target questions: - Which part of the capture-transport-storage CCS system? - Which timeline? (project planning, project lifespan, post closure, 1,000 years, etc) - Which risk aspect? (technical, regulatory, economic, public acceptance, or heath safety and environment) - Which risk metric? (Dollars, CO2 lost, dollars/tonne CO2 avoided, etc.) Once the responses to these questions are understood a procedure and suite of tools can be selected that adequately addresses the questions. The key components of the CO2CRC procedure we describe here are: etc

  • Carbon capture and storage is a mitigation strategy that could rapidly reduce CO2 emissions from high emission sources. However, the exploration and assessment of reservoirs for the geological storage of CO2 is a complicated science commonly hampered by large uncertainties. The major hurdles lie in correctly assessing the prospectivity of basin plays, and ultimately of play fairways suitable for CO2 storage. On the North West Shelf of Australia, turbidite deposits are a common depositional system and many are considered prospective for CO2 storage in this emission intensive part of Australia. Using an integrated reservoir modelling approach, this study assessed the storage potential of the Caswell Fan turbidite in the Browse Basin, Western Australia. A detailed seismic interpretation utilising both 2D and 3D seismic and four previously drilled wells, provided the sequence stratigraphic framework for a detailed reservoir evaluation. The Fan was deposited in a basin floor fan setting within a lowstand systems tract, which provided optimal conditions for sequestration due to the sandstone's extended geometry, sorting, and high net-to-gross ratios, all overlain by a regional marine claystone seal. Through 3D static geological modelling it was determined that the Caswell Fan had an estimated storage capacity of approximately 300 million tonnes of CO2. This largely unconfined basin floor fan represents one of several plays along the North West Shelf of Australia, which could provide suitable CO2 storage formations for the carbon capture and storage industry.

  • Geoscience Australia has recently completed the Bonaparte CO2 Storage project, an assessment of the CO2 storage potential of the Petrel Sub-basin. In 2009, two greenhouse gas assessment leases were released, PTRL-01 and PTRL-02, under the Offshore Petroleum and Greenhouse Gas Storage Act of 2006. Both are proximal to the developing LNG market in Darwin, as well as a number of hydrocarbon accumulations in the Bonaparte Basin. A key phase of the project was geological modelling to test CO2 injection scenarios. Initial 3D seismic horizon surfaces were generated to create a 'simple' geological model. A 'complex' geological model was built by integrating a structure model, which was depth converted. Subsequently, models were populated with reservoir properties such as Vshale, porosity and permeability. Palaeogeography maps were generated for all key stratigraphic units and were used to populate the model where well control was lacking. Using Permedia', CO2 migration simulations with randomly located injection wells were run on a high resolution model to study the migration pathways, major accumulations and the effects of vertical anisotropy. Smaller areas of interest were then identified to reduce the size of the model and allow fluid flow reservoir simulations study using Permedia' and CMG-GEM'. The later study estimated the practical injectivity, storage volume, reservoir pressure during and after CO2 injection.

  • A question and answer style brochure on geological storage of carbon dioxide. Questions addressed include: - What is geological storage? - Why do we need to store carbon dioxide? - How can you store anything in solid rock? - Could the carbon dioxide contaminate the fresh water supply? - Could a hydrocarbon seal leak? - Are there any geological storage projects in Australia?

  • As part of the Australian Government's National CO2 Infrastructure Plan (NCIP), Geoscience Australia undertook a CO2 storage assessment of the Vlaming Sub-basin. The Vlaming Sub-basin a Mesozoic depocentre within the offshore southern Perth Basin located about 30 km west of Perth, Western Australia. The main depocentres formed during the Middle Jurassic to Early Cretaceous extension. The post-rift succession comprises up to 1500 m of a complex fluvio-deltaic, shelfal and submarine fan system. Close proximity of the Vlaming Sub-basin to industrial sources of CO2 emissions in the Perth area drives the search for storage solutions. The Early Cretaceous Gage Sandstone was previously identified as a suitable reservoir for the long term geological storage of CO2 with the South Perth Shale acting as a regional seal. The Gage reservoir has porosities of 23-30% and permeabilities of 200-1800 mD. The study provides a more detailed characterisation of the post Valanginian Break-up reservoir - seal pair by conducting a sequence stratigraphic and palaeogeographic assessment of the SP Supersequence. It is based on an integrated sequence stratigraphic analysis of 19 wells and 10, 000 line kilometres of 2D reflection seismic data, and the assessment of new and revised biostratigraphic data, digital well logs and lithological interpretations of cuttings and core samples. Palaeogeographies were reconstructed by mapping higher-order prograding packages and establishing changes in sea level and sediment supply to portray the development of the delta system. The SP Supersequence incorporates two major deltaic systems operating from the north and south of the sub-basin which were deposited in a restricted marine environment. Prograding clinoforms are clearly imaged on regional 2D seismic lines. The deltaic succession incorporates submarine fan, pro-delta, delta-front to shelfal, deltaic shallow marine and fluvio-deltaic sediments. These were identified using seismic stratigraphic techniques and confirmed with well ties where available. The break of toe slope was particularly important in delineating the transition between silty slope sediments and fine-grained pro-delta shales which provide the seal for the Gage submarine fan complex. As the primary reservoir target, the Gage lowstand fan was investigated further by conducting seismic faces mapping to characterise seismic reflection continuity and amplitude variations. The suitability of this method was confirmed by obtaining comparable results based on the analysis of relative acoustic impedance of the seismic data. The Gage reservoir forms part of a sand-rich submarine fan system and was sub-divided into three units. It ranges from canyon confined inner fan deposits to middle fan deposits on a basin plain and slump deposits adjacent to the palaeotopographic highs. Directions of sediment supply are complex. Initially, the major sediment contributions are from a northern and southern canyon adjacent to the Badaminna Fault Zone. These coalesce in the inner middle fan and move westward onto the plain producing the outer middle fan. As time progresses sediment supply from the east becomes more significant. Although much of the submarine fan complex is not penetrated by wells, the inner fan is interpreted to contain stacked channelized high energy turbidity currents and debris flows that would provide the most suitable reservoir target due to good vertical and lateral sand connectivity. The middle outer fan deposits are predicted to contain finer-grained material hence would have poorer lateral and vertical communication.

  • In 2011 as part of the National CO2 Infrastructure Plan (NCIP), Geoscience Australia started a three year project to provide new pre-competitive data and a more detailed assessment of the Vlaming Sub-basin prospectivity for the storage of CO2. Initial assessment by Causebrook 2006 of this basin identified Gage Sandstone and South Perth Shale (SPS) formations as the main reservoir/seal pair suitable for long-term storage of CO2. SPS is a thick (1900 m) deltaic succession with highly variable lithologies. It was estimated that the SPS is capable of holding a column of CO2 of up to 663m based on 6 MICP tests (Causebrook, 2006). The current study found that sealing capacity of the SPS varies considerably across the basin depending on what part of the SPS Supersequence is present at that location. Applying a sequence-stratigraphic approach, the distribution of mudstone facies within the SPS Supersequence, was mapped across the basin. This facies is the effective sub-regional seal of the SPS. Analysis of the spatial distribution and thickness of the effective seal is used for characterisation of the containment potential in the Vlaming Sub-basin CO2 storage assessment.

  • Introduction This National Carbon Infrastructure Plan study assesses the suitability of the Vlaming Sub-basin for CO2 storage. The Vlaming Sub-basin is a Mesozoic depocentre within the offshore southern Perth Basin, Western Australia (Figure 1). It is around 23,000 km2 and contains up to 14 km of sediments. The Early Cretaceous Gage Sandstone was deposited in paleo-topographic lows of the Valanginian breakup unconformity and is overlain by the South Perth Shale regional seal. Together, these formations are the most prospective reservoir/seal pair for CO2 storage. The Gage Sandstone reservoir has porosities of 23-30% and permeabilities of 200-1800 mD. It lies mostly from 1000 - 3000 m below the seafloor, which is suitable for injection of supercritical CO2 and makes it an attractive target as a long-term storage reservoir. Methods & datasets To characterise the Gage reservoir, a detailed sequence stratigraphic analysis was conducted integrating 2D seismic interpretation, well log analysis and new biostratigraphic data (MacPhail, 2012). Paleogeographic reconstructions of components of the Gage Lowstand Systems Tract (LST) are based on seismic facies mapping, and well log and seismic interpretations. Results The Gage reservoir is a low stand systems tract that largely coincides with the Gage Sandstone and is defined by the presence of the lower G. mutabilis dinoflagellate zone. A palynological review of 6 wells led to a significant revision, at the local scale, of the Valanginian Unconformity and the extent of the G. mutabilis dinoflagellate zones (MacPhail, 2012). G. mutabilis dinoflagellates were originally deposited in lagoonal (or similar) environments and were subsequently redeposited in a restricted marine environment via mass transport flows. Mapping of the shelf break indicates that the Gage LST was deposited in water depths of >400 m. Intersected in 8 wells, the Gage LST forms part of a sand-rich submarine fan system (Figure 2) that includes channelized turbidites, low stand fan deposits, debris flows (Table 1). This interpretation is broadly consistent with Spring & Newell (1993) and Causebrook (2006). The Gage LST is thickest (up to 360 m) at the mouth of large canyons adjacent to the Badaminna Fault Zone (BFZ) and on the undulating basin plain west of Warnbro 1 (Figure 1). Paleogeographic maps depict the evolution of the submarine fan system (Figure 3). Sediment transport directions feeding the Gage LST are complex. Unit A is sourced from the northern canyon (Figure 3a). Subsequently, Unit B (Figure 3b) derived sediment from multiple directions including incised canyons adjacent to BFZ and E-W oriented canyons eroding into the Badaminna high. These coalesce on an undulating basin plain west of Warnbro 1. Minor additional input for the uppermost Unit C (Figure 3c) is derived from sources near Challenger 1. Summary 1: The Gage LST is an Early Cretaceous submarine fan system that began deposition during the G. mutabilis dinoflagellate zone. It ranges from confined canyon fill to outer fan deposits on an undulating basin plain. 2: The 3 units within the Gage LST show multidirectional sediment sources. The dominant supply is via large canyons running north-south adjacent to the Badaminna Fault Zone. 3: Seismic facies interpretations and palaeogeographic mapping show that the best quality reservoirs for potential CO2 storage are located in the outer fan (Unit C sub-unit 3) and the mounded canyon fill (Unit A). These are more likely to be laterally connected. 4: The defined units and palaeogeographic maps will be used in a regional reservoir model to estimate the storage capacity of the Gage LST reservoir.