From 1 - 10 / 28
  • As part of Geoscience Australia’s Exploring for the Future Program, Broadband and Audio Magnetotelluric (MT) data were acquired at 131 stations in the East Tennant region, Northern Territory, in 2019. This survey aimed to characterise major crustal structures, to map cover thickness to assist in stratigraphic drill targeting, and to help understand mineral potential in the region. The data package was released in December 2019 (http://dx.doi.org/10.26186/5df80d8615367) and the 3D resistivity model was released in March 2020 (https://pid.geoscience.gov.au/dataset/ga/135011). We applied a probabilistic approach to inverting high-frequency MT data for cover thickness estimation using the 1D Rj-McMCMT code, newly developed in Geoscience Australia. The inversion employs multiple Markov chains in parallel to generate an ensemble of millions of resistivity models that adequately fit the data given the assigned noise levels. The algorithm uses trans-dimensional Markov chain Monte Carlo techniques to solve for a probabilistic resistivity-depth model. Once the ensemble of models is generated, its statistics are analysed to assess the posterior probability distribution of the resistivity at any particular depth, as well as the number of layers and the depths of the interfaces. This stochastic approach gives a thorough exploration of the model space and a more robust estimation of uncertainty than deterministic methods allow. This release package includes the results of probabilistic inversion of Audio Magnetotelluric data at the 131 stations. They can be used to estimate cover thickness for drill site planning, and to map the base of geological basins in the region. Model data files are large, but can be made available on request to clientservices@ga.gov.au.

  • X3D Model and Visualisation of the Hydrostratigraphic System in the Hodgson and Kings Creek Sub-Catchments

  • The aim of this document is to * outline the general process adopted by Geoscience Australia in modelling storm surge inundation for projects conducted in collaboration with Australian and State Government planning agencies * allow discoverability of all data used to generate the products for the collaborative projects as well as internal activities

  • The project modelled the tsunami inundation to selected sites in South East Tasmania based on a Mw 8.7 earthquake on the Puysegur Trench occurring at Mean Sea Level. As yet, there is no knowledge of the return period for this event. The project was done in collaboration with Tasmania State Emergency Services as part of a broader project that investigated tsunami history through palaeotsunami investigations. The intent was to build the capability of staff within Tasmania Government to undertake the modelling themselves. Formal modelling of the tsunami inundation occurred through national project funding.

  • These data comprises the 3D geophysical and geological map of the Georgina-Arunta region, Northern Territory. This 3D map summarises the key basement provinces of this region, including the geometric relationships between these provinces. Depth of cover data, and approximate thicknesses of key basins within the region are also provided. Supporting geophysical studies, including inversions of gravity and magnetic data, and seismic data and their corresponding interpretations acquired under the Australian Government's Onshore Energy Security Program, are included with this 3D map. Finally, additional data, such as topographic data, are also included.

  • The depth to Proterozoic basement surface was constructed in order to delineate the thickness of Phanerozoic and more recent cover material. The "basement" refers to the Neoproterozoic and older rocks underlying the Canning Basin. The 3D surface was constructed using GoCad software and constrained by drill-hole data, Euler depth solutions and forward modelling using magnetic data, and interpreted depths from three seismic lines crossing the Waukalycarly Embayment. The depth to basement surface should be used as a guide. With the exception of the drill-hole data, there are uncertainties involved in estimating the depths based on the magnetic methods (Euler depth solutions and forward modelling), as well as the seismic data.

  • This product is a rendered 3D model of one of the five ACT fossil emblem candidates, the graptolite Monograptus exiguus. The format of the file is ply. or Polygon File Format, and it is designed to store 3D data. The model requires no post-scanning manipulation as it is already complete. The purpose of this is to make this file format publicly available to local school communities so they can 3D print the fossil emblems themselves and engage students with Earth science related topics. <b>Acknowledgement:</b> Computed Tomography (CT) Scans and models generated at <a href="https://ctlab.anu.edu.au/">CTLab</a> - National Laboratory for X-Ray Micro Computed Tomography, Research School of Physics, The Australian National University (ANU), Canberra.

  • This metadata relates to the ANUGA hydrodynamic modelling results for Busselton, south-west Western Australia. The results consist of inundation extent and peak momentum gridded spatial data for each of the ten modelling scenarios. The scenarios are based on Tropical Cyclone (TC) Alby that impacted Western Australia in 1978 and the combination of TC Alby with a track and time shift, sea-level rise and riverine flood scenarios. The inundation extent defines grid cells that were identified as wet within each of the modelling scenarios. The momentum results define the maximum momentum value recorded for each inundated grid cell within each modelling scenario. Refer to the professional opinion (Coastal inundation modelling for Busselton, Western Australia, under current and future climate) for details of the project.

  • A 3D map of the Cooper Basin region has been produced over an area of 300 x 450 km to a depth of 20 km. The 3D map was constructed from 3D inversions of gravity data using geological data to constrain the inversions. It delineates regions of low density within the basement of the Cooper/Eromanga Basins that are inferred to be granitic bodies. This interpretation is supported by a spatial correlation between the modelled bodies and known granite occurrences. The 3D map, which also delineates the 3D geometries of the Cooper and Eromanga Basins, therefore incorporates both potential heat sources and thermally insulating cover, key elements in locating a geothermal play. This study was conducted as part of Geoscience Australia's Onshore Energy Security Program, Geothermal Energy Project.

  • 3D visualisation of the Mount Isa Crustal Seismic Survey