climate
Type of resources
Keywords
Publication year
Topics
-
A statistical downscaling approach is used to compare changes in environmental indicators of tropical cyclone characteristics between three greenhouse gas emissions scenarios in the Australian region, using results from models used for the IPCC 4th Assessment Report. Maximum potential intensity is shown to change linearly with global mean temperature, independent of emissions scenario, with a 2-3% increase per degree of global warming in Australia's tropical regions. Changes in vertical wind shear are more ambiguous, however the magnitude of changes in tropical cyclone genesis regions is small. The genesis potential index increases significantly in all scenarios, and appears to be driven by the increase in MPI. Results for Australia's tropical regions suggest that tropical cyclone intensity is highly likely to increase with global warming, while results for frequency are suggestive of a frequency increase, but less conclusive. Further work to assess frequency changes will allow quantification of changes in tropical cyclone hazard under climate change.
-
The Antarctic region has profoundly affected the global climates of the past 50 million years, influencing sea levels, atmospheric composition and dynamics, and ocean circulation. A greater understanding of this region and the Antarctic cryosphere is crucial to a broader understanding of the global climates and palaeoceanography at all scales. Much of the information obtained during the last two decades derives from studies of sedimentary sequences drilled in and around Antarctica.
-
The Australian National Coastal Vulnerability Assessment (NCVA) has been commissioned by the Federal Government (Department of Climate Change) to assess the risk to coastal communities from climate related hazards including sea-level rise, storm surge and severe wind from tropical cyclones. In addition to an understanding of the impact/risk posed by the current climate, we have also examined the change in risk under a range of future climate scenarios considering a number of periods up to the end of the 21st century. In collaboration with state and local governments and private industry, this assessment will provide information for application to policy decisions for, inter alia, land use, building codes, emergency management and insurance applications. The understanding of coastal vulnerability and risk is derived from a number of factors, including: the frequency and intensity of the hazard(s); community exposure and the relationship with stressors; vulnerability related to socio-economic factors; impacts that result from the interaction of those components; and capacity of communities, particularly vulnerable communities and groups, to plan, prepare, respond and recover from these impacts. These factors and resulting impacts from hazard events are often complex and often poorly known, but such complexity and uncertainty is not an excuse for inaction. Given these limitations, the NCVA has been undertaken using the best information available to understand the risk to coastal areas on a national scale, and to prioritise areas that will require more detailed assessment.
-
Climate change has become a real challenge for all nations throughout the world. The Fifth IPCC Assessment Report (2007) indicates that climate change is inevitable and those nations that quickly adapt will mitigate risk from the threats of the increased strength of tropical cyclones, storm surge inundation, floods and the spread of disease vectors. Decision making for adaptation will be more effective when it is based on evidence. Evidence-based disaster management means that decision makers are better informed, and the decision making process delivers more rational, representative and objective climate change outcomes. To achieve this, fundamental data needs to be translated into information and knowledge, before it can be put to use by the decision makers as policy, planning and implementation. The exposure to these increased natural hazards includes the communities, businesses, services, lifeline utilities and infrastructure. The thorough understanding of exposed infrastructure and population under current and future climate projections is fundamental to the process of future capacity building. The development of the National Exposure Information System (NEXIS) is a significant national project being undertaken by Geoscience Australia (GA). NEXIS collects, collates, manages and provides the information required to assess multi-hazard impacts. Exposure information is defined as a suite of elements at risk from climate change which includes human populations, buildings, businesses and infrastructure.
-
We highlight the importance of developing and integrating fundamental information at a range of scales (regional to national to local) to develop consistency, gain ownership, and meet the needs of a range of users and decision makers. We demonstrate this with a couple of case studies where we have leveraged national databases and computational tools to work locally to gain ownership of risks and to develop adaptation options. In this sense we endorse the notion of combining top down and bottom up approaches to get the best outcome.
-
A review commissioned by the Council of Australian Governments (COAG) in June 2001 entitled 'Natural Disasters in Australia: reforming mitigation, relief and recovery arrangements' concluded that a new approach to natural disasters in Australia was needed. While disaster response and reaction plans remain important, there is now a greater focus towards anticipation of mitigation against natural hazards, involving a fundamental shift in focus beyond relief and recovery towards cost-effective, evidence-based disaster mitigation. This new approach now includes an assessment of the changes in frequency and intensity of natural hazard events that are influenced by climate change, and aims to achieve safer, more sustainable Australian communities in addition to a reduction in risk, damage and losses from future natural disasters. Geoscience Australia (GA) is developing risk models and innovative approaches to assess the potential losses to Australian communities from a range of sudden impact natural hazards. GA aims to define the economic and social threat posed by a range of rapid onset hazards through a combined study of natural hazard research methods and risk assessment models. These hazards include earthquakes, cyclones, floods, landslides, severe winds and storm surge/tsunami. This presentation provides an overview of the risk that peak wind gusts pose to a number of Australian communities (major capital cities), and for some cities examines how climate change may affect the risk (utilising modelling underpinned by a small subset of the IPCC greenhouse gas emission scenarios).
-
ODP drilling in Prydz Bay by Leg 119 (1988) and Leg 188 (2000) investigated Cainozoic paleoenvironments of the continental shelf, slope and rise. Drilling on the shelf reveal a pre-glacial alluvial or delta plain system covering the Prydz Bay basin -- a plain characterized by austral conifer woodland in Late Cretaceous that changed to Nothofagus rainforest scrub by mid to late Eocene time. Evidence of mountain glaciation in late Eocene time is seen in sand grain textures in channel sands. Interbedded clays and sands and an increase in marine dinoflagellates signals a marine transgression of the delta plain. In the late Eocene to early Oligocene, Prydz Bay shifted from being a fluvio-deltaic complex with vegetation to a marine continental shelf environment. The transition is marked by a sequence boundary and marine flooding surface onlapped by glaciomarine muds with dropstones that denote the first appearance of floating ice on the shelf, followed by diamicts that contain shelly fossils. No core exists for early Oligocene to early Miocene times, and seismic data suggest the transition from shallow to normal depth, prograding continental shelf, with submarine canyons on the slope and channel/levees on the rise. Cores from the continental rise provide evidence of a Neogene long-term (m.y.) decrease in sedimentation rates and short-term (Milankovitch periods) cyclicity between principally biogenic and terrigenous sediment supply due possibly to cyclic changes in onshore glaciers and related changes in ocean circulation. Mid Miocene times saw more-rapid slowing of sedimentation rates, a shift to enhanced IRD, and changes in clays and other minerals. These transitions result from enhanced glacial erosion of onshore and shelf source areas and reduced input from glacial meltwater as the ice became progressively colder. The Early Pliocene saw the deposition of overcompacted glacial diamictons on the shelf, and bank/trough morphology produced by formation of an ice stream ice in western Prydz Bay. Debris flows formed a trough mouth fan on the continental slope. Compositional changes in the trough mouth fan suggests peak erosion and therefore possibly peak ice volumes at about 1.1 Ma. Late Pleistocene times (post 780 ka.) saw a reduction in frequency of extreme advances by the main ice drainage system, in response to reduced precipitation accompanying cooling, extreme erosion of the inner shelf and changes in the interaction of the ice sheet response time and the prevailing climate cycle length. These changes probably reflect the overall cooling of the Antarctic from non-glacial, to restricted temperate glaciers to poly thermal ice sheet to the present cold based ice sheet. Superimposed on this overall cooling trend are pulses of warmer conditions, indicated by beds of warmer water nannoplankton and changes diatom assemblages
-
This report, 'Pacific Climate Change Science Program: Evaluation of severe wind hazard from tropical cyclones', will be delivered to CSIRO to form a subsection of the 'Climate Change in the Pacific' report. The latter will be launched in November 2011 and will constitute one of the main deliverables for the Pacific Climate Change Science Program (PCCSP). The PCCSP is part of the Australian Government's commitment through the International Climate Change Adaptation Initiative (ICCAI) to meet high priority climate change adaptation needs in vulnerable countries in the Asia-Pacific region. This report provides an evaluation of cyclonic wind hazard for the fifteen PCCSP partner countries located in the western Pacific with the one exception of East Timor. The wind hazard is estimated for both the current climate and for the future climate under an A2 emissions scenario. The current climate wind hazard is estimated by applying GA's Tropical Cyclone Risk Model (TCRM) to the historical track record. TCRM is a statistical-parametric model of tropical cyclone behaviour, enabling users to generate synthetic records of tropical cyclones representing many thousands of years of activity. TCRM is then applied to tracks of tropical cyclone-like vortices (TCLVs) detected in downscaled global climate models to determine how the cyclonic wind hazard may change in the future. The results indicated that the wind loading design standard in this region may significantly underestimate the wind hazard for the current climate. For the future climate projections, the analysis suggests that the wind hazard may decrease for countries close to the equator and near the Australian coastline but could increase for countries greater than 20 degrees poleward from the equator.
-
Mean monthly and mean annual rainfall grids. The grids show the rainfall values across Australia in the form of two-dimensional array data. The mean data are based on the standard 30-year period 1961-1990. Gridded data were generated using the ANU (Australian National University) 3-D Spline (surface fitting algorithm). The resolution of the data is 0.025 degrees ( approximately 2.5km) - as part of the 3-D analysis process a 0.025 degree resolution digital elevation model (DEM) was used. Approximately 6000 stations were used in the analysis over Australia. All input station data underwent a high degree of quality control before analysis, and conform to WMO (World Meteorological Organisation) standards for data quality.
-
Climate change is a challenge facing nations worldwide. The Fifth IPCC Assessment Report (2007) indicated that climate change is inevitable and that nations need to quickly adapt to mitigate its effects on the risks associated with increased tropical cyclone intensity, storm surge inundation, floods and exacerbated spread of disease. Nationally consistent exposure information is required to understand the risks associated with climate change and thereby support decision making on adaptation options. Decision makers can draw on this evidence-base to develop more rational, representative and objective strategies for addressing emerging challenges. Exposure information requires the translation of fundamental data into information and knowledge before it can be put to use for policy, planning and implementation. Communities, businesses, essential services and infrastructure are all exposed to these increased natural hazards. A thorough understanding of exposed infrastructure, building stock and population under current and future climate projections is fundamental to the process of future capacity building. The National Exposure Information System (NEXIS) provides a broad range of information on the exposure profile of any given area at various administrative and disaster sensitive geographic resolutions with Australia-wide coverage. The information is collected, collated and maintained at building level that can subsequently be aggregated geographically. The information recorded in NEXIS covers a wide range of building attributes such as building type, construction type and year built together with information on population demographics and metrics on business activity such as business type, turnover, employee numbers and customer capacity.