From 1 - 10 / 51
  • This Record contains new zircon U-Pb geochronological data, obtained via Sensitive High-Resolution Ion Micro Probe (SHRIMP), from two samples of metamorphosed felsic igneous rocks of the Proterozoic Pinjarra Orogen (Western Australia), intersected in diamond drillcore at the base of deep petroleum exploration wells penetrating the Paleozoic sedimentary successions of the Perth Basin. In the southern Perth Basin, petroleum exploration well Sue 1 was terminated at depth 3074.2 m, in crystalline basement rocks of the southern Pinjarra Orogen. Abundant zircon from a biotite-bearing felsic orthogneiss at depth 3073.2-3073.7 m yielded a complex array of U-Pb isotopic data, indicative of significant post-crystallisation disturbance of the isotopic system. A Discordia regression fitted to the array yielded an upper intercept date of 1076 ± 35 Ma (all quoted uncertainties are 95% confidence intervals unless specified otherwise) interpreted to represent magmatic crystallisation of the igneous precursor to the orthogneiss, and a lower intercept date of 680 ± 110 Ma which is our best estimate of the age of the tectonothermal event responsible for post-crystallisation disturbance of the U-Pb system. Crust of known Mesoproterozoic age is rare in the southern Pinjarra Orogen: pre-1000 Ma igneous crystallisation ages in the Leeuwin Complex were previously known only from two c. 1090 Ma garnet-bearing orthogneisses at Redgate Beach (Nelson, 1999), 30 km west of Sue 1. All other dated outcrops have revealed Neoproterozoic (780-680 Ma) granitic protoliths reworked by Early Cambrian (540-520 Ma) magmatism, deformation and metamorphism (Nelson, 1996, 2002; Collins, 2003). In the northern Perth Basin, petroleum exploration well Beagle Ridge 10A was terminated at depth 1482 m, in crystalline basement rocks of the northern Pinjarra Orogen. A leucocratic orthogneiss sampled within the interval 1464.0-1467.0 m yielded only sparse zircon, but four of the seven grains analysed yielded a weighted mean 207Pb/206Pb date of 1092 ± 27 Ma, interpreted to represent magmatic crystallisation of the igneous precursor to the orthogneiss. Our data show no evidence for Neoproterozoic U-Pb resetting of the c. 1090 Ma zircons: where present, post-crystallisation isotopic disturbance is predominantly geologically recent. The two newly dated samples are located at opposite ends of the Perth Basin (about 470 km apart), and although the two magmatic crystallisation ages are imprecise, the date of 1092 ± 27 Ma from the Beagle Ridge 10A leucocratic orthogneiss is indistinguishable from the date of 1076 ± 35 Ma from the Sue 1 felsic orthogneiss. Furthermore, both rocks contain inherited zircon of Mesoproterozoic age (1620-1180 Ma in Sue 1; 1290-1210 Ma in Beagle Ridge 10A), indicating the presence of pre-1100 Ma crustal components in their parent magmas. This is consistent with a suite of Paleoproterozoic Sm-Nd model ages determined by Fletcher et al. (1985) on buried Pinjarra Orogen orthogneisses, which span 2.01 ± 0.06 Ga to 1.78 ± 0.04 Ga in the north (near BMR Beagle Ridge 10A), and including a model age of 1.80 ± 0.04 Ga from a sample of granitic gneiss obtained from Sue 1. Fletcher et al. (1985) argued that the consistency of 2.1-1.8 Ga Nd model ages obtained from crystalline basement in drillcore beneath the southern and northern Perth Basin, and from outcrop in the Northampton Complex and Mullingarra Complex of the northern Pinjarra Orogen, indicated a similar or shared crustal evolution. Our new U-Pb zircon data support this model, expanding the known extent of 1100-1050 Ma felsic magmatism in both the southern and northern Pinjarra Orogen, and indicating that Neoproterozoic tectonothermal overprinting appears to be restricted to the Leeuwin Complex, with no corresponding event discernible in the northern Pinjarra Orogen.

  • This Record presents data collected between March and September 2018 as part of the ongoing Northern Territory Geological Survey–Geoscience Australia (NTGS–GA) SHRIMP geochronology project under the National Collaborative Framework (NCF) agreement and Geoscience Australia's Exploring for the Future Programme. Five new U–Pb SHRIMP zircon geochronological results derived from five samples of meta-igneous and metasedimentary rocks from MOUNT RENNIE (southwestern Aileron Province and northwestern Warumpi Province) in the Northern Territory are presented herein. All five samples are located at or close to the recently discovered greenfield Grapple and Bumblebee prospects that contain precious and base metal sulfide mineralisation. This Record represents the first attempt to provide temporal constraints on the country rocks that host or occur close to this mineralisation. <b>Bibliographic Reference:</b> Kositcin N, McGloin MV, Reno BL and Beyer EE, 2019. Summary of results. Joint NTGS–GA geochronology project: Cu-Au-Ag-Zn mineralisation in MOUNT RENNIE, Aileron and Warumpi provinces, March – September 2018. <i>Northern Territory Geological Survey</i>, <b>Record 2019-011</b>.

  • The Mesoproterozoic South Nicholson Basin sits between, and overlies, the Paleoproterozoic Mount Isa Province to the east and the southern McArthur Basin to the northwest. The McArthur Basin and Mount Isa Province are well studied and highly prospective for both mineral and energy resources. In contrast, rocks in the South Nicholson region (incorporating the Mount Isa Province, the Lawn Hill Platform and the South Nicholson Basin, and geographically straddling the Northern Territory and Queensland border) are mostly undercover, little studied and consequently relatively poorly understood. A comprehensive U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon and xenotime geochronology program was undertaken to better understand the stratigraphy of the South Nicholson region and its relationship to the adjacent, more overtly prospective Mount Isa Province and McArthur Basin. The age data indicate that South Nicholson Basin deposition commenced ca. 1483 Ma, with cessation at least by ca. 1266 Ma. The latter age, based on U-Pb xenotime, is interpreted as the timing of postdiagenetic regional fluid flow. The geochronology presented here provides the first direct age data confirming that the South Nicholson Group is broadly contemporaneous with the Roper Group of the McArthur Basin. Some rocks, mapped previously as Mesoproterozoic South Nicholson Group and comprising proximal, immature lithofacies, have detrital spectra consistent with that of the late Paleoproterozoic McNamara Group of the western Mount Isa Province; this will necessitate a revision of existing regional stratigraphic relationships. The stratigraphic revisions and correlations proposed here significantly expand the extent of highly prospective late Paleoproterozoic stratigraphy across the South Nicholson region, which, possibly, extends even further west beneath the Georgina and Carpentaria basins. Our data and conclusions allow improved regional stratigraphic correlations between Proterozoic basins, improved commodity prospectivity and targeted exploration strategies across northern Australia. <b>Citation:</b> Carson, C.J., Kositcin, N., Anderson, J.R., Cross, A. and Henson, P.A., 2020. New U–Pb geochronology for the South Nicholson region and implications for stratigraphic correlations.. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • This Record presents new zircon U-Pb geochronological data, obtained using a Sensitive High Resolution Ion MicroProbe (SHRIMP), and thin section descriptions for four samples of plutonic and sedimentary rocks from the Captains Flat 1:50, 000 special map sheet, Eastern Lachlan Orogen, New South Wales. The work was carried out under the auspices of the National Geoscience Accord, as a component of the collaborative Geochronology Project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) during the reporting periods 2012 and 2013. The four samples (Table 1.1 and Figure 1.1) were collected from CANBERRA (small and large capitals refer to map sheet names in the 1:100 000 and 1:250 000 Topographic Series respectively); one sample from CANBERRA (northcentral CANBERRA), two from MICHELAGO (southcentral CANBERRA) and one from ARALUEN (southcentral CANBERRA).

  • To test existing geological interpretations and the regional stratigraphic relationships of the Carrara Sub-basin with adjacent resource-rich provinces, the deep stratigraphic drill hole NDI Carrara 1 was located on the western flanks of the Carrara Sub-basin, on the seismic line 17GA-SN1. The recovery of high quality near-continuous core from the Carrara Sub-basin, in concert with the spectrum of baseline analytical work being conducted by Geoscience Australia through the EFTF program, as well as other work by government and university researchers is greatly improving our understanding of this new basin. While recently published geochemistry baseline datasets have provided valuable insight into the Carrara Sub-basin, the age of the sedimentary rocks intersected by NDI Carrara 1 and their chronostratigraphic relationships with adjacent resource rich regions has remained an outstanding question. In this contribution, we present new sensitive high-resolution ion microprobe (SHRIMP) geochronology results from NDI Carrara 1 and establish regional stratigraphic correlations to better understand the energy and base-metal resource potential of this exciting frontier basin in northern Australia.

  • This Record presents new U Pb geochronological data, obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP), from nine samples of sedimentary rocks collected from the Paleo- to Neoproterozoic Birrindudu and Victoria Basins, and underlying basement from the Victoria River catchment region, northwest Northern Territory. The newly acquired U–Pb SHRIMP data are discussed and integrated with existing detrital zircon geochronology to assist in the determination of maximum depositional ages and sedimentary provenance during the evolution of the Birrindudu and Victoria Basins, and contribute to lithostratigraphic correlations with other Proterozoic basins across northern Australia (e.g., the greater McArthur Basin and the Centralian Superbasin, Walter et al., 1995; Munson et al., 2013; Carson, 2013; Munson, 2016).

  • This work is a part of an investigation of mineralisation associated with the extensive Kennedy Igneous Association (Champion & Bultitude, 2013) in North Queensland. This part of the project involves U–Pb zircon geochronology of magmatic rocks that are associated with gold mineralisation. By doing this we hope to identify key time-periods of magmatic activity that can be used by explorers to better focus their exploration efforts and assist with the development of new tectono-metallogenic models. Earlier results published by Cross et al. (2019) and Kositcin et al. (2016) in the Jardine Subprovince of the Kennedy Igneous Association in Cape York, for the first time, demonstrated a strong association between gold mineralisation and early Permian (285–280 Ma) felsic dykes that intrude either Proterozoic metamorphic rocks or Devonian granites of the Cape York Batholith. The SHRIMP U–Pb zircon results reported here come from three magmatic rocks, Badu Granite (2678819/QFG8689E), Horn Island Granite (2678820/QFG8800A) and unnamed rhyolite (2678818/QFG8798A), that were sampled from exploration drill core, drilled by Alice Queen Limited on behalf of its subsidiary company, Kauraru Gold Pty Ltd between 2016 and 2017 on the western margins of the historic Horn Island gold mine. Prior to this work, magmatic rocks of the Badu Supersuite on Horn Island were attributed to the Jardine Subprovince of the Kennedy Igneous Association (Champion & Bultitude 2013). The Badu Supersuite comprises the Badu Suite (Badu Granite, Horn Island Granite and unmineralised porphyritic dykes; von Gnielinski et al., 1997) and the Torres Strait Volcanic Group. Gold mineralisation on Horn Island is intrusion-related and occurs within narrow quartz veins that contain native gold and sulphide mineralisation (Alice Queen Limited, 2021) that cut both the Badu and Horn Island granites but not the late-stage porphyritic dykes (von Gnielinski, 1996; von Gnielinski et al., 1997). Historical K–Ar ages from 286–302 Ma for Badu Suite intrusives (Richards and Willmott, 1970) were used to imply a late Carboniferous to early Permian age for the Torres Strait Volcanic Group. Recently however, two units from the Torres Strait Volcanic Group, the Endeavour Strait Ignimbrite and the ‘Bluffs Quarry’ rhyolite dyke yielded SHRIMP 206Pb/238U ages of 349.2 ± 3.1 Ma (Cross et al., 2019) and 353.4 ± 2.2 Ma (Kositcin et al., 2016), respectively, placing this group in the early Carboniferous. Two of the samples, the Badu Granite (2678819/QFG8689E) and Horn Island Granite (2678820/QFG8800A) gave indistinguishable 206Pb/238U results within analytical uncertainty (MSWD = 1.6, POF = 0.21) of 342.8 ± 1.9 Ma and 344.4 ± 1.7 Ma, respectively. The unmineralised, cross cutting, unnamed rhyolite (2678818/QFG8798A) has a significantly younger 206Pb/238U age of 309.9 ± 1.5 Ma. These results demonstrate that the Badu Granite and Horn Island Granite are early Carboniferous in age and not early Permian as previously thought. The historical K–Ar ages (302–286 Ma) for Badu Suite intrusives are interpreted to record thermal resetting. Together with the ca 350 Ma crystallisation ages for two units from the Torres Strait Volcanic Group (Cross et al., 2019; Kositcin et al., 2016), these new results reveal that magmatic crystallisation ages for the Badu Supersuite range between ca 350 Ma and 310 Ma. As such, the Badu Supersuite, along with the Black Cap Diorite (350.7 ± 1.3 Ma; Murgulov et al., 2009) near Georgetown, represents the earliest phase of magmatism associated with the early Carboniferous to late Permian, Kennedy Igneous Association. Consequently, the Badu Supersuite including the Badu Suite and the Torres Strait Volcanic Group are now seen to belong to a newly named Torres Strait Subprovince, which is distinctly older than the Jardine Subprovince on Cape York Peninsula. Additionally, these results constrain the timing of gold mineralisation at Horn Island to between a maximum age at ca 344 Ma provided by the host granites and a minimum age at ca 310 Ma constrained by the rhyolite dyke (2678818/QFG8798A). These constraints for the timing of gold mineralisation at Horn Island are further supported by unpublished results presented by Lisitsin & Dhnaram (2019a, b). These workers mention preliminary ca 342–344 Ma Re–Os molybdenite ages from two samples of quartz-molybdenite veins that cut the Badu Granite and an Ar–Ar age from sericite alteration associated with a quartz-sulphide-gold vein at ca 320 Ma that they considered to best represent the timing of gold mineralisation. The new SHRIMP U–Pb zircon ages presented here for magmatic rocks of the Badu Suite, reveal the association between gold mineralisation and early Carboniferous magmatism associated with the newly named Torres Strait Subprovince of the Kennedy Igneous Association.

  • High-grade gold (Au), copper (Cu) and bismuth (Bi) ores in the Tennant Creek goldfield have been mined from hydrothermal magnetite and/or hematite-rich ironstone bodies. Less well known is a style of Au-Cu-Bi mineralisation hosted by quartz vein systems within shear zones outside ironstones. Sensitive High Resolution Ion Micro Probe (SHRIMP) U-Pb-Th analyses of hydrothermal monazite [(LREE)PO4] associated with this mineralisation style at the Orlando East Au-Cu-Bi deposit and Navigator 6 Au prospect yield ages of 1659 ± 13 Ma and 1659 ± 15 Ma, respectively. These ages are nearly 200 million years younger than the age established from ironstone-hosted ores in the district. This new result widens the exploration ‘search space’ for gold into rock formations previously regarded as too young to host this style of mineralisation. <b>Citation:</b> Skirrow, R.G., Cross, A.J., Magee, C.W., Lecomte, A., and Mercadier, J., 2020. Identification of a new ca. 1660 Ma Au-Cu-Bi metallogenic event at Tennant Creek. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • This Record presents new zircon U-Pb geochronological data, obtained using a Sensitive High Resolution Ion MicroProbe (SHRIMP) for five samples of plutonic and volcanic rocks from the central Lachlan Orogen and the Thomson Orogen, New South Wales. The work was carried out under the auspices of the National Geoscience Accord, as a component of the collaborative Geochronology Project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) during the reporting periods 2011-2012.

  • This record presents new zircon U-Pb geochronological data, obtained via Sensitive High Resolution Ion Microprobe (SHRIMP) for eleven samples of plutonic and volcanic rocks from the Lachlan Orogen, and the New England Orogen. The work is part of an ongoing Geochronology Project (Metals in Time), conducted by the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) under a National Collaborative Framework (NCF) agreement, to better understand the geological evolution of New South Wales. The results herein (summarised in Table 1.1 and Table 1.2) correspond to zircon U-Pb SHRIMP analysis undertaken on GSNSW mineral systems projects for the reporting period July 2015-June 2016. Lachlan Orogen In the Lachlan Orogen, the age of 418.9 ± 2.5 Ma for the Babinda Volcanics is consistent with the accepted stratigraphy of its parent Kopyje Group, agrees with the ages of other I-type volcanic rocks within the Canbelego-Mineral Hill Volcanic Belt and indicates eruption and emplacement of this belt during a single event. The age of the Shuttleton Rhyolite Member (421.9 ± 2.7 Ma) of the Amphitheatre Group is compatible with recent U-Pb dating of the Mount Halfway Volcanics, which interfingers with the Amphitheatre Group (MacRae, 1987). The age is also similar to nearby S-type granite intrusions, which suggests that the limited eruptive volcanic activity in the region was accompanied by local coeval plutonism. The results for the Babinda Volcanics and Shuttleton Rhyolite Member, in conjunction with previous GA dating and other dating and studies (summarised in Downes et al., 2016) establishes that significant igneous activity occurred between ~423 and ~418 Ma within the Cobar region but comprised two compositionally distinct but broadly contemporaneous belts of volcanics and comagmatic granite intrusions. The new age for the unnamed quartz monzonite at Hobbs Pipe constrains the maximum age of the hosted gold mineralisation to 414.7 ± 2.6 Ma. The wide range in ages for granites along the Gilmore Suture suggests that mineralisation in this region is not necessarily constrained to a single short-lived event. The new age of 413.5 ± 2.3 Ma for volcanics at Yerranderie indicates that that the Bindook Volcanic Complex was erupted over a relatively short period, and also indicates that the epithermal mineralisation at Yerranderie was not genetically related to the host volcanics but probably to a younger rifting event in the east Lachlan. New England Orogen Four units were dated from the Clarence River Supersuite in the New England Orogen. All four are between 255 and 256 Ma, demonstrating that these granites are related chemically, spatially, and temporally. While these four ages are indistinguishable, the current age span for Clarence River Supersuite is more than 40 million years. This wide age range indicates that classification of granites into the Clarence River Supersuite needs further refinement. The new age for the Newton Boyd Granodiorite (252.8 ± 1.0 Ma) is similar to some previously dated units within the Herries Supersuite, but both the Herries Supersuite and Stanthorpe Supersuite (into which the Herries Supersuite was reclassified by Donchak, 2013) incorporate units with a broad range of ages: the age distribution for the Stanthorpe Supersuite spans 50 million years. Classification of granites in the New England Orogen in New South Wales is worth revisiting. Two units were dated from the Drake Volcanics, nominally in the Wandsworth Volcanic Group and indicate that the middle to upper section of the Drake Volcanics, including the mineralising intrusions, were emplaced within the space of 1-2 million years. These results support a genetic and temporal link between the Au-Ag epithermal mineralisation at White Rock and Red Rock and their host Drake Volcanic packages rather than to younger regional plutonism (i.e., Stanthorpe Supersuite) or volcanism (i.e., Wandsworth Volcanics). The almost 10 Ma gap between the Drake Volcanics and the next lowest units of the Wandsworth Volcanic Group supports the argument for considering the Drake Volcanics a distinct unit.