National Groundwater Systems
Type of resources
Keywords
Publication year
Topics
-
<div>The Exploring for the Future program is a world leading program, delivering public geoscientific data and information required to empower decision-makers and attract future investment in resource exploration and development. Geoscience Australia engaged Alluvium Consulting Australia to quantify the impact and value of groundwater activities and outputs to the quadruple bottom line through an evaluation of 2 case studies, namely: • National Hydrogeological Mapping • The Southern Stuart Corridor project. This involved understanding the impact pathways for these case studies and the collection of data to be used in a cost benefit analysis. The work sought to provide feedback to Geoscience Australia, stakeholder groups and the broader community on the value of Geoscience Australia’s groundwater activities. The case study evaluations were facilitated by a series of specific questions, which were developed to guide data collection and the building of a knowledge base around the impact and value of the work in each case study and associated outputs. The questions broadly fell under the following categories: 1. Uptake and Usage 2. Impact 3. Benefit These evaluations were framed around the program impact pathway developed for each case study. This is a description of how inputs are used to deliver activities, which in turn result in outcomes and impacts (changes) for stakeholders, including the environment. The primary means of data collection to help answer the key evaluation questions was through online workshops and interviews with key stakeholders for each case study. These were undertaken between March 10 and March 24, 2023. In these workshops and interviews, representatives from industry, community and government agencies were asked if they could identify instances where case study program outputs were used for particular purposes, such as prioritising research or investment, advising Members of Parliament, or education and training. These examples were then explored further to understand what outcomes and benefits were derived from the use of the case study outputs, and how critical were the case study outputs to achieving those outcomes and benefits</div>
-
<div> Airborne electromagnetic (AEM) data has been acquired at 20km line spacing across much of the Australian continent and conductivity models generated by inverting these data are freely available. Despite the wide line spacing these data are suitable for imaging the near surface and better understanding groundwater systems. Twenty-kilometre spaced AEM data acquired over the Cooper Creek floodplain using a fixed-wing towed system were inverted using deterministic and probabilistic methods. The Cooper Creek is an anabranching ephemeral river system in arid eastern central Australia. We integrated conductivity data with a range of surface and subsurface data to characterise the hydrogeology of the region and infer groundwater salinity from the shallow alluvial aquifer across a more than 14,000 km2 Cooper Creek floodplain. The conductivity data also revealed several examples of focused recharge through a river channel forming a freshwater lens within the more regional shallow saline groundwater system.</div><div> </div><div>This work demonstrates that regional AEM conductivity data can be a valuable tool for understanding groundwater processes at various scales with implications for how to responsibly manage water resources. This work is especially important in the Australian context where high quality borehole data is typically sparse, but high-quality geophysical and satellite data are often accessible.</div><div> </div> This presentation was given to the 8th International Airborne Electromagnetics Workshop (AEM2023) (https://www.aseg.org.au/news/aem-2023)
-
<div>The geological data includes the spatial extents of the Kati Thanda - Lake Eyre Basin (KT-LEB) project area, geological basin and sub-basin boundaries, and geological models of the extent and thickness of the main Cenozoic sedimentary packages in the KT-LEB in central Australia. This data package has particular focus on the geological Lake Eyre Basin (LEB) and its main sedimentary depocentres of the Callabonna and Tirari sub-basins, and the Cooper Creek Palaeovalley. The new geological datasets available in this data package were developed as part of the project on the Cenozoic geology, hydrogeology, and groundwater systems of the Kati Thanda - Lake Eyre Basin, the results of which were published in Evans et al. (2024). This activity was undertaken as part of the National Groundwater Systems project in the Geoscience Australia Exploring for the Future program.</div><div><br></div><div>This geological data package contains the following eight datasets:</div><div>1. Spatial extents of the boundary of the KT–LEB project area.</div><div>2. Major sites of Cenozoic sediment deposition within the KT-LEB.</div><div>3. Total thickness of Cenozoic sediments in KT-LEB, with derived contours, hillshaded image and Cenozoic cover extent. </div><div>4. Saturated thickness model of Cenozoic sediments in the KT-LEB with derived contours, hillshaded image and Cenozoic cover extent.</div><div>5. Model of the base of Cenozoic surface of the KT-LEB project area, with derived contours, hill-shaded image and Cenozoic cover extent.</div><div>6. Model of thickness of Quaternary sediments of the KT-LEB with derived contours, hillshaded image and the Quaternary sediments extent outline.</div><div>7. Model of thickness of Namba Formation in KT-LEB, with derived contours, hillshaded image and the Namba Formation extent outline.</div><div>8. Model of thickness of Eyre Formation in KT-LEB with derived contours, hillshaded image and the Eyre Formation extent outline.</div><div><br></div><div>Reference:</div><div>Evans TJ, Bishop C, Symington NJ, Halas L, Hansen JWH, Norton CJ, Hannaford C and Lewis SJ (2024) <em>Cenozoic geology, hydrogeology, and groundwater systems: Kati Thanda – Lake Eyre Basin</em>, Record 2024/05, Geoscience Australia, Canberra, http://dx.doi.org/10.26186/147422.</div><div><br></div>
-
<div>This dataset represents the second version of a compilation of borehole stratigraphic unit data on a national scale (Figure 1). It builds on the previous Australian Borehole Stratigraphic Units Compilation (ABSUC) Version 1.0 (Vizy & Rollet, 2023a) with additional new or updated stratigraphic interpretation on key boreholes located in Figure 2. Its purpose is to consolidate and standardise publicly accessible information from boreholes, including those related to petroleum, stratigraphy, minerals, and water. This compilation encompasses data from states and territories, as well as less readily available borehole logs and interpretations of stratigraphy.</div><div> </div><div>This study was conducted as part of the National Groundwater Systems (NGS) Project within the Australian Government's Exploring for the Future (EFTF) program. Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. More information is available at http://www.ga.gov.au/eftf and https://www.eftf.ga.gov.au/national-groundwater-systems.</div><div> </div><div>As our understanding of Australian groundwater systems expands across states and territories, including legacy data from the 1970s and recent studies, it becomes evident that there is significant geological complexity and spatial variability in stratigraphic and hydrostratigraphic units nationwide. Recognising this complexity, there is a need to standardise diverse datasets, including borehole location and elevation, as well as variations in depth and nomenclature of stratigraphic picks. This standardisation aims to create a consistent, continent-wide stratigraphic framework for better understanding groundwater system for effective long-term water resource management and integrated resource assessments.</div><div> </div><div>This continental-scale compilation consolidates borehole data from 53 sources, refining 1,117,693 formation picks to 1,010,483 unique records from 171,396 boreholes across Australia. It provides a consistent framework for interpreting various datasets, enhancing 3D aquifer geometry and connectivity. Each data source's reliability is weighted, prioritising the most confident interpretations. Geological units conform to the Australian Stratigraphic Units Database (ASUD) for efficient updates. Regular updates are necessary to accommodate evolving information. Borehole surveys and dip measurements are excluded. As a result, stratigraphic picks are not adjusted for deviation, potentially impacting true vertical depth in deviated boreholes.</div><div> </div><div>This dataset provides:</div><div>ABSUC_v2 Australian stratigraphic unit compilation dataset (ABSUC)</div><div>ABSUC_v2_TOP A subset of preferred top picks from the ABSUC_v2 dataset</div><div>ABSUC_v2_BASE A subset of preferred base picks from the ABSUC_v2 dataset</div><div>ABSUC_BOREHOLE_v2 ABSUC Borehole collar dataset</div><div>ASUD_2023 A subset of the Australia Stratigraphic Units Database (ASUD)</div><div> </div><div>Utilising this uniform compilation of stratigraphic units, enhancements have been made to the geological and hydrogeological surfaces of the Great Artesian Basin, Lake Eyre Basin and Centralian Superbasin. This compilation is instrumental in mapping various regional groundwater systems and other resources throughout the continent. Furthermore, it offers a standardised approach to mapping regional geology, providing a consistent foundation for comprehensive resource impact assessments.</div>
-
This was the fourth of five presentations held on 31 July 2023 as part of the National Groundwater Systems Workshop - Detailed Groundwater Science Inventory Geology, hydrogeology and groundwater systems in the Kati Thanda-Lake Eyre Basin.
-
<div>This dataset presents results of a first iteration of a 3D geological model across the Georgina Basin, Beetaloo Sub-basin of the greater McArthur Basin and South Nicholson Basin (Figure 1), completed as part of Geoscience Australia’s Exploring for the Future Program National Groundwater Systems (NGS) Project. These basins are located in a poorly exposed area between the prospective Mt Isa Province in western Queensland, the Warramunga Province in the Northern Territory, and the southern McArthur Basin to the north. These surrounding regions host major base metal or gold deposits, contain units prospective for energy resources, and hold significant groundwater resources. The Georgina Basin has the greatest potential for groundwater.</div><div> </div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. More information is available at http://www.ga.gov.au/eftf and https://www.eftf.ga.gov.au/national-groundwater-systems.</div><div> </div><div>This model builds on the work undertaken in regional projects across energy, minerals and groundwater aspects in a collection of data and interpretation completed from the first and second phases of the EFTF program. The geological and geophysical knowledge gathered for energy and minerals projects is used to refine understanding of groundwater systems in the region.</div><div> </div><div>In this study, we integrated interpretation of a subset of new regional-scale data, which include ~1,900 km of deep seismic reflection data and 60,000 line kilometres of AusAEM1 airborne electromagnetic survey, supplemented with stratigraphic interpretation from new drill holes undertaken as part of the National Drilling Initiative and review of legacy borehole information (Figure 2). A consistent chronostratigraphic framework (Figure 3) is used to collate the information in a 3D model allowing visualisation of stacked Cenozoic Karumba Basin, Mesozoic Carpentaria Basin, Neoproterozoic to Paleozoic Georgina Basin, Mesoproterozoic Roper Superbasin (including South Nicholson Basin and Beetaloo Sub-basin of the southern McArthur Basin), Paleoproterozoic Isa, Calvert and Leichhardt superbasins (including the pre-Mesoproterozoic stratigraphy of the southern McArthur Basin) and their potential connectivity. The 3D geological model (Figure 4) is used to inform the basin architecture that underpins groundwater conceptual models in the region, constrain aquifer attribution and groundwater flow divides. This interpretation refines a semi-continental geological framework, as input to national coverage databases and informs decision-making for exploration, groundwater resource management and resource impact assessments.</div><div><br></div><div>This metadata document is associated with a data package including:</div><div>· Nine surfaces (Table 1): 1-Digital elevation Model (Whiteway, 2009), 2-Base Cenozoic, 3-Base Mesozoic, 4-Base Neoproterozoic, 5-Base Roper Superbasin, 6-Base Isa Superbasin, 7-Base Calvert Superbasin, 8-Base Leichhardt Superbasin and 9-Basement.</div><div>· Eight isochores (Table 4): 1-Cenozoic sediments (Karumba Basin), 2-Mesozoic sediments (Carpentaria and Eromanga basins), 3-Paleozoic and Neoproterozoic sediments (Georgina Basin), 4-Mesoproterozoic sediments (Roper Superbasin including South Nicholson Basin and Beetaloo Sub-basin), 5-Paleoproterozoic Isa Superbasin, 6-Paleoproterozoic Calvert Superbasin, 7-Paleoproterozoic Leichhardt Superbasin and 8-Undifferentiated Paleoproterozoic above basement.</div><div>· Five confidence maps (Table 5) on the following stratigraphic surfaces: 1-Base Cenozoic sediments, 2-Base Mesozoic, 3-Base Neoproterozoic, 4-Base Roper Superbasin and 5-Combination of Base Isa Superbasin/Base Calvert Superbasin/Base Leichhardt Superbasin/Basement.</div><div>· Three section examples (Figure 4) with associated locations.</div><div>Two videos showing section profiles through the model in E-W and N-S orientation.</div>
-
Australia is the driest inhabited continent on Earth, and groundwater is crucial to supporting many urban and rural communities, economic activities and environmental values. Geoscience Australia, the nation’s trusted advisor on Earth Science, is renewing a deliberate focus on national-scale hydrogeological challenges within the Exploring for the Future program. This will be accomplished by building upon Geoscience Australia’s historic legacy in groundwater studies, including the development of the 1987 national hydrogeological map. Updating the extents, data and scientific understanding of the regions depicted in this map, and bringing it into a version suitable for access and use in the 21st century, will address many limitations of the existing map and its accompanying knowledge base. This compilation of information on Australia’s major hydrogeological regions, including both geospatial analyses of national datasets and high-level summaries of scientific literature, provides for a clear and consistent synthesis of hydrogeological and related contextual information. Supporting the delivery of the National Water Initiative and National Groundwater Strategic Framework, the inventory will benefit multi-sector water users (agriculture, communities, industry and tourism) and the environment. This work will also directly assist prioritisation and decision-making for future investment, and focus groundwater research in the work programs of Geoscience Australia and potentially inform national hydrogeological research more broadly. <b>Citation: </b>Lewis S. J., Lai E. C. S., Flower C. & Lester J. E., 2022. Towards a national information inventory of Australia’s major hydrogeological regions. In: Czarnota, K (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146974
-
<div>As part of the Exploring for the Future (EFTF) programme, the groundwater team undertook an in-depth investigation into characterising surface water -- groundwater interaction in the Cooper Creek floodplain using airborne electromagnetics (AEM). This work is to be released as part of the Lake Eyre Basin detailed inventory and as an EFTF extended abstract. As part of Geoscience Australia's commitment to transparent science, the scientific workflows that underpinned a large component of this investigation are to be released as a jupyter notebook. This notebook contains python code, figures and explanatory text that the reader can use to understand how the AEM data were processed, visualised, integrated with other data and interpreted.</div>
-
<div>The Kati Thanda – Lake Eyre Basin (KT–LEB) covers about 1.2 million square kilometres of outback Australia. Although the basin is sparsely populated and relatively undeveloped it hosts nationally significant environmental and cultural heritage, including unique desert rivers, sweeping arid landscapes, and clusters of major artesian springs. The basin experiences climatic extremes that intermittently cycle between prolonged droughts and massive inland floods, with groundwater resources playing a critical role in supporting the many communities, industries, ecological systems, and thriving First Nations culture of the KT–LEB.</div><div><br></div><div>As part of Geoscience Australia’s National Groundwater Systems Project (in the Exploring for the Future Program) this report brings together contemporary data and information relevant to understanding the regional geology, hydrogeology and groundwater systems of Cenozoic rocks and sediments of the KT–LEB. This work represents the first whole-of-basin assessment into these vitally important shallow groundwater resources, which have previously received far less scientific attention than the deeper groundwater systems of the underlying Eromanga Basin (part of the Great Artesian Basin). The new knowledge and insights about the geology and hydrogeology of the basin generated by this study will benefit the many users of groundwater within the region and will help to improve sustainable management and use of groundwater resources across the KT–LEB.</div><div><br></div>
-
<div>This report and associated data package provide a compilation of biostratigraphic summaries, borehole logs, and stratigraphic correlations for key boreholes across the Amadeus, Officer and Georgina basins in the Paleozoic‒Neoproterozoic Centralian Superbasin and in the underlying older Mesoproterozoic South Nicholson and southern McArthur basins, laying the groundwork for further studies. This study is part of Geoscience Australia’s National Groundwater Systems project in the Exploring for the Future (EFTF) program.</div><div>This work compiles publicly available borehole data to enhance regional stratigraphic understanding. Future studies should incorporate outcrop constraints, geophysical data, and additional geological dating, alongside collaboration with experts to validate sequence chronostratigraphic correlations. The stratigraphic framework aligns geological units with timeframes, enabling consistent interbasinal correlation to group aquifers and aquitards and sedimentary mapping across lithologies and time periods. This alignment supports the integration of hydrostratigraphic classifications, potentially revealing a more accurate model of water flow connectivity over geological time units. The compilation standardises borehole log interpretation and integrates geological and hydrogeological data, contributing to national databases, exploration guidance, improving groundwater understanding, and resource impact assessments for decision-making across various groundwater, energy and minerals disciplines.</div><div>The study builds on previous EFTF program work (e.g., Bradshaw et al., 2021; Khider et al., 2021; Carson et al., 2023; Anderson et al., 2023) and legacy studies across Australia, addressing challenges in understanding groundwater systems due to limited subsurface geology knowledge and fragmented data across jurisdictions. A nationally coordinated approach is essential, with well logs playing a key role in interpreting subsurface geology. The mapping process involves interpolating between surface outcrops and subsurface strata using borehole data, integrated with geophysical interpretations. The goal is to create a consistent 3D geological framework across time-equivalent basins and jurisdictions, enabling consistent groundwater system assessments and water flow path analysis at regional and national scales.</div><div>Although not intended to be a major re-interpretation of existing data, this stratigraphy review updates stratigraphic picks where necessary to ensure a consistent interpretation across the study area. This framework is based on the 13 Centralian Supersequences defined in Bradshaw et al. (2021). Using this framework, a revised stratigraphic chart is proposed in this study to align geological units across the Officer, Amadeus, and Georgina basins with the geological time scale (Gradstein et al., 2020), incorporating significant events, such as major glaciations, orogens and other tectonic movements. </div><div>This report aims to summarise the main biostratigraphic groups used, where they have been found, and provide a detailed list of the reports available. Existing biostratigraphic data from 142 boreholes in the Georgina, Amadeus, and Officer basins and underlying older southern McArthur and South Nicholson basins, were compiled to improve regional correlations, addressing data gaps identified in previous studies. Due to time constraints, only the five fossil groups found most in borehole data are included, such as trilobites, palynology, conodonts, stromatolites and small shelly fossils. However, outcrop data provides a much larger dataset and set of fossil groups and will need to be incorporated for future studies. Outcrop biostratigraphic data was excluded here, as the focus of this study was collating borehole data. Efforts were made to refine and update formation picks, ensuring consistency in correlations across larger areas. The correlation of geological units and their assignment to the corresponding 13 Centralian Supersequences in 272 key boreholes provide a foundational stratigraphic framework. Challenges include limited biostratigraphic data, diverse dating methods, and complex structural histories in the studied basins. Problems and inconsistencies in the input data or current interpretations are highlighted to suggest where further studies or investigations may be useful. Borehole correlation transects have been established across each of the basins (20 in total), displaying age data points along with formation picks and supersequence divisions. While these simple 2D transects may not capture the structural complexity of specific areas, they provide a broad overview of the interrelationships between different units across each basin.</div><div>The datasets compiled and used in this study are in Appendix A (Biostratigraphic data) and Appendix B (Borehole stratigraphic data).</div>