Mineralogy
Type of resources
Keywords
Publication year
Service types
Topics
-
<div>The Heavy Mineral Map of Australia (HMMA) project1, part of Geoscience Australia’s Exploring for the Future program, determined the abundance and distribution of heavy minerals (HMs; specific gravity >2.9 g/cm3) in 1315 floodplain sediment samples obtained from Geoscience Australia’s National Geochemical Survey of Australia (NGSA) project2. Archived NGSA samples from floodplain landforms were sub-sampled with the 75-430 µm fraction subjected to dense media separation and automated mineralogy assay using a TESCAN Integrated Mineral Analysis (TIMA) instrument at Curtin University.</div><div><br></div><div>Interpretation of the massive number of mineral observations generated during the project (~150 million mineral observations; 166 unique mineral species) required the development of a novel workflow to allow end users to discover, visualise and interpret mineral co-occurrence and spatial relationships. Mineral Network Analysis (MNA) has been shown to be a dynamic and quantitative tool capable of revealing and visualizing complex patterns of abundance, diversity and distribution in large mineralogical data sets3. To facilitate the application of MNA for the interpretation of the HMMA dataset and efficient communication of the project results, we have developed a Mineral Network Analysis for Heavy Minerals (MNA4HM) web application utilising the ‘Shiny’ platform and R package. The MNA4HM application is used to reveal (1) the abundance and co-occurrences of heavy minerals, (2) their spatial distributions, and (3) their relations to first-order geological and geomorphological features. The latter include geological provinces, mineral deposits, topography and major river basins. Visualisation of the mineral network guides parsimonious yet meaningful mapping of minerals typomorphic of particular geological environments or mineral systems. The mineralogical dataset can be filtered or styled based on mineral attributes (e.g., simplified mineralogical classes) and properties (e.g., chemical composition).</div><div><br></div><div>In this talk we will demonstrate an optimised MNA4HM workflow (identification à mapping à interpretation) for exploration targeting selected critical minerals important for the transition to a lower carbon global economy. </div><div><br></div><div>The MNA4HM application is hosted at https://geoscienceaustralia.shinyapps.io/mna4hm and is available for use by the geological community and general public.</div> This Abstract was submitted and presented to the 2023 Goldschmidt Conference Lyon, France (https://conf.goldschmidt.info/goldschmidt/2023/meetingapp.cgi)
-
Geoscience Australia is currently assessing selected Australian sedimentary basins for their unconventional hydrocarbon resource potential, in collaboration with the Northern Territory and state governments. A study of the southern Georgina Basin is in progress, involving the compilation of a cross-border dataset of all accessible open file seismic, well, geological and geochemical data that will be publicly released in mid-2014. Major geochemical resampling of old wells has generated new information on source rock characteristics, kerogen kinetics, and gas and oil isotope geochemistry in the Georgina Basin. Preliminary 3D geology and 1D petroleum systems models have also been generated. Several cores from the Georgina Basin have been HyLogged by the geological surveys of Northern Territory, Queensland and New South Wales, using HyLogging facilities funded by AuScope Pty Ltd and CSIRO as part of the National Collaborative Research Infrastructure Strategy (NCRIS) and AuScope National Virtual Core Library (NVCL) Project. Geoscience Australia currently has a project underway to reprocess the raw HyLogging data using a common set of mineral scalars, to create an internally-consistent, basin-wide dataset. An initial composite HyLogging data package was publicly released in March 2014, including reprocessed data for 14 wells in the southern Georgina Basin, information about the processing methods used, and metadata. A second stage of the project will involve interpretation of the reprocessed data from these wells, to further examine the relationships between the spectroscopic and mineralogical properties measured by the HyLogger, and core total organic carbon (TOC), XRD, XRF and ICPMS compositional data, well log data, and biostratigraphic data. Initial work has indicated interesting trends, such as the apparent relationship between gamma intensity, core SWIR albedo (mean shortwave infrared reflectance) and quartz content. Peaks in gamma intensity broadly align with troughs in albedo, suggesting that the reduced albedo is a result of increased TOC content. However, in others cores (or even the same core), peaks in gamma intensity also appear to correlate with potassium-rich phases such as white micas and other clay minerals, thus the gamma correlation does not appear straightforward. Other preliminary observations indicate that using HyLogging data provides (i) the opportunity to review the existing formation picks in the basin from a mineralogical perspective, (ii) new information on variations in calcite/dolomite proportions in the carbonate sequences, (iii) the ability to map apatite distribution, and (iv) mineralogical evidence of sedimentary cyclicity. It is thus hoped that integrated interpretation of the HyLogging data and other data types will enable clearer delineation of the lower Arthur Creek Formation (and the 'Hot Shale' within) in the Georgina Basin, and therefore assist in constraining target intervals for future unconventional hydrocarbon resource assessments.
-
<div>A novel method of estimating the silica (SiO2) and loss-on-ignition (LOI) concentrations for the North American Soil Geochemical Landscapes (NASGL) project datasets is proposed. Combining the precision of the geochemical determinations with the completeness of the mineralogical NASGL data, we suggest a ‘reverse normative’ or inversion approach to calculate first the minimum SiO2, water (H2O) and carbon dioxide (CO2) concentrations in weight percent (wt%) in these samples. These can be used in a first step to compute minimum and maximum estimates for SiO2. In a recursive step, a ‘consensus’ SiO2 is then established as the average between the two aforementioned estimates, trimmed as necessary to yield a total composition (major oxides converted from reported Al, Ca, Fe, K, Mg, Mn, Na, P, S, and Ti elemental concentrations + ‘consensus’ SiO2 + reported trace element concentrations converted to wt% + ‘normative’ H2O + ‘normative’ CO2) of no more than 100 wt%. Any remaining compositional gap between 100 wt% and this sum is considered ‘other’ LOI and likely includes H2O and CO2 from the reported ‘amorphous’ phase (of unknown geochemical or mineralogical composition) as well as other volatile components present in soil. We validate the technique against a separate dataset from Australia where geochemical (including all major oxides) and mineralogical data exist on the same samples. The correlation between predicted and observed SiO2 is linear, strong (R2 = 0.91) and homoscedastic. We also compare the estimated NASGL SiO2 concentrations with another publicly available continental-scale survey over the conterminous USA, the ‘Shacklette and Boerngen’ dataset. This comparison shows the new data to be a reasonable representation of SiO2 values measured on the ground over the same study area. We recommend the approach of combining geochemical and mineralogical information to estimate missing SiO2 and LOI by the recursive inversion approach in datasets elsewhere, with the caveat to validate results.</div><div><br></div><div>The major oxide concentrations, including those for the estimated SiO2 and LOI, for the NASGL A and C horizons are available for download, as CSV files. A worked example for five selected NASGL C horizon samples is also available for download, as an XLSX file.</div> <b>Citation:</b> P. de Caritat, E. Grunsky, D.B. Smith; Estimating the silica content and loss-on-ignition in the North American Soil Geochemical Landscapes datasets: a recursive inversion approach. <i>Geochemistry: Exploration, Environment, Analysis</i> 2023; 23 (3): 2023-039 doi: https://doi.org/10.1144/geochem2023-039 This article appears in multiple journals (Lyell Collection & GeoScienceWorld)
-
The Hera Au–Pb–Zn–Ag deposit in the southeastern Cobar Basin of central New South Wales preserves calc-silicate veins/skarn and remnant carbonate/sandstone-hosted skarn within a reduced anchizonal Siluro-Devonian turbidite sequence. The skarn orebody distribution is controlled by a long-lived, basin margin fault system, that has intersected a sedimentary horizon dominated by siliciclastic turbidite, with lesser gritstone and thick sandstone intervals, and rare carbonate-bearing stratigraphy. Foliation (S1) envelopes the orebody and is crosscut by a series of late-stage east–west and north–south trending faults. Skarn at Hera displays mineralogical zonation along strike, from southern spessartine–grossular–biotite–actinolite-rich associations, to central diopside-rich–zoisite–actinolite/tremolite–grossular-bearing associations, through to the northern most tremolite–anorthite-rich (garnet-absent) association in remnant carbonate-rich lithologies and sandstone horizons; the northern lodes also display zonation down dip to garnet present associations at depth. High-T skarn assemblages are pervasively retrogressed to actinolite/tremolite–biotite-rich skarn and this retrograde phase is associated with the main pulse of sulfide mineralisation. The dominant sulfides are high-Fe-Mn sphalerite–galena–non-magnetic high-Fe pyrrhotite–chalcopyrite; pyrite, arsenopyrite and scheelite are locally abundant. The distribution of metals in part mimics the changing gangue mineralogy, with Au concentrated in the southern and lower northern lode systems and broadly inverse concentrations for Ag–Pb–Zn. Stable isotope data (O–H–S) from skarn amphiboles and associated sulfides are consistent with magmatic/basinal water and magmatic sulfur inputs, while hydrosilicates and sulfides from the wall rocks display elevated δD and mixed δ34S consistent with progressive mixing or dilution of original basinal/magmatic waters within the Hera deposit by unexchanged waters typical of low latitude (tropical) meteoritic waters. High precision titanite (U–Pb) and biotite (Ar–Ar) geochronology reveals a manifold orebody commencing with high-T skarn and retrograde Pb–Zn-rich skarn formation at ≥403 Ma, Au–low-Fe sphalerite mineralisation at 403.4 ± 1.1 Ma, foliation development remobilisation or new mineralisation at 390 ± 0.2 Ma followed by thrusting, orebody dismemberment at (384.8 ± 1.1 Ma) and remobilization or new mineralisation at 381.0 ± 2.2 Ma. The polymetallic nature of the Hera orebody is a result of multiple mineralizing events during extension and compression and involving both magmatic and likely basinal fluid/metal sources. <b>Citation:</b> Fitzherbert, Joel A., McKinnon, Adam R., Blevin, Phillip L., Waltenberg, Kathryn., Downes, Peter M., Wall, Corey., Matchan, Erin., Huang Huiqin., The Hera orebody: A complex distal (Au–Zn–Pb–Ag–Cu) skarn in the Cobar Basin of central New South Wales, Australia <i>Resource Geology,</i> Vol 71, Iss 4, pp296-319 <b>2021</b>. DOI: https://doi.org/10.1111/rge.12262
-
Collection of mineral, gem, meteorite, fossil (including the Commonwealth Palaeontological Collection) and petrographic thin section specimens dating back to the early 1900s. The collection is of scientific, historic, aesthetic, and social significance. Geoscience Australia is responsible for the management and preservation of the collection, as well as facilitating access to the collection for research, and geoscience education and outreach. Over 700 specimens from the collection are displayed in our public gallery . The collection contains: • 15,000 gem, mineral and meteorite specimens from localities in Australia and across the globe. • 45,000 published palaeontological specimens contained in the Commonwealth Palaeontological Collection (CPC) mainly from Australia. • 1,000,000 unpublished fossils in a ‘Bulk Fossil’ collection. • 250,000 petrographic thin section slides. • 200 historical geoscience instruments including: cartography, geophysical, and laboratory equipment." <b>Value: </b>Specimens in the collection are derived from Geoscience Australia (GA) surveys, submissions by researchers, donations, purchases and bequests. A number of mineral specimens are held on behalf of the National Museum of Australia. <b>Scope: </b>This is a national collection that began in the early 1900s with early Commonwealth surveys collecting material across the country and British territories. The mineral specimens are mainly from across Australia, with a strong representation from major mineral deposits such as Broken Hill, and almost 40% from the rest of the world. The majority of fossils are from Australia, with a small proportion from lands historically or currently under Australian control, such as Papua New Guinea and the Australian Antarctic Territory.
-
<div>Environmental DNA (eDNA), elemental and mineralogical analyses of soil have been shown to be specific to their source material, prompting consideration of the use of dust for forensic provenancing. Dust is ubiquitous in the environment and is easily transferred to items belonging to a person of interest, making dust analysis an ideal tool in forensic casework. The advent of Next Generation Sequencing technologies means that metabarcoding of eDNA can uncover microbial, fungal, and even plant genetic fingerprints in dust particles. Combining this with elemental and mineralogical compositions offers multiple, complementary lines of evidence for tracing the origin of an unknown dust sample. This is particularly pertinent when recovering dust from a person of interest to ascertain where they may have travelled. Prior to proposing dust as a forensic trace material, however, the optimum sampling protocols and detection limits need to be established to place parameters around its utility in this context. We tested several approaches to collecting dust from different materials and determined the lowest quantity of dust that could be analysed for eDNA, geochemistry and mineralogy, whilst still yielding results capable of distinguishing between sites. We found that fungal eDNA profiles could be obtained from multiple sample types and that tape lifts were the optimum collection method for discriminating between sites. We successfully recovered both fungal and bacterial eDNA profiles down to 3 mg of dust (the lowest tested quantity) and recovered elemental and mineralogical compositions for all tested sample quantities. We show that dust can be reliably recovered from different sample types, using different sampling techniques, and that fungal, bacterial, and elemental and mineralogical profiles, can be generated from small sample quantities, highlighting the utility of dust as a forensic provenance material.</div> <b>Citation:</b> Nicole R. Foster, Belinda Martin, Jurian Hoogewerff, Michael G. Aberle, Patrice de Caritat, Paul Roffey, Robert Edwards, Arif Malik, Priscilla Thwaites, Michelle Waycott, Jennifer Young, The utility of dust for forensic intelligence: Exploring collection methods and detection limits for environmental DNA, elemental and mineralogical analyses of dust samples, <i>Forensic Science International </i>, Volume 344, 2023, 111599, ISSN 0379-0738, https://doi.org/10.1016/j.forsciint.2023.111599. ISSN 0379-0738,
-
<div>The National Geochemical Survey of Australia (NGSA) is Australia’s only internally consistent, continental-scale geochemical atlas and dataset. The present report presents additional mineralogical data acquired as part of the Heavy Mineral Map of Australia (HMMA) project on the NGSA samples, covering ~81% of Australia. The HMMA project, a collaborative project between Geoscience Australia and Curtin University underpinned by a pilot project establishing its feasibility, is part of the Australian Government-funded Exploring for the Future (EFTF) program.</div><div>All of the 1315 NGSA bottom catchment outlet sediment samples, taken on average from 60 to 80 cm depth in floodplain landforms, were used in the HMMA project. The samples were dried and sieved to a 75-425 µm grainsize fraction, and the contained heavy minerals (HMs; i.e., those with a specific gravity > 2.9 g/cm3) were separated by dense fluids and mounted on cylindrical epoxy mounts. After polishing and carbon-coating, the mounts were subjected to automated mineralogical analysis on a TESCAN® Integrated Mineral Analyzer (TIMA). Using scanning electron microscopy and backscatter electron imaging integrated with energy dispersive X-ray analysis, the TIMA identified 163 unique phases (including ‘Unclassified”) in the NGSA sample set. The dataset, consisting of over 145 million individual mineral grains, was quality controlled and validated by an expert team. The data released here can be visualised, explored and downloaded using a free online, bespoke mineral network analysis (MNA) tool built on a cloud-based platform. Preliminary analysis suggests that zinc minerals and native elements (e.g., native gold and platinum) may be useful in mineral exploration applications. Detailed interpretations of the HMMA dataset will be provided elsewhere. Accompanying this report are data files of TIMA results, a minerals property file, and an atlas of HM distribution maps. </div><div>It is hoped the comprehensive dataset generated by the HMMA project will be of use to mineral exploration and prospectivity modelling around Australia, as well as have other applications in earth and environmental sciences.</div>
-
Remotely sensed datasets provide fundamental information for understanding the chemical, physical and temporal dynamics of the atmosphere, lithosphere, biosphere and hydrosphere. Satellite remote sensing has been used extensively in mapping the nature and characteristics of the terrestrial land surface, including vegetation, rock, soil and landforms, across global to local-district scales. With the exception of hyper-arid regions, mapping rock and soil from space has been problematic because of vegetation that either masks the underlying substrate or confuses the spectral signatures of geological materials (i.e. diagnostic mineral spectral features), making them difficult to resolve. As part of the Exploring for the Future program, a new barest earth Landsat mosaic of the Australian continent using time-series analysis significantly reduces the influence of vegetation and enhances mapping of soil and exposed rock from space. Here, we provide a brief background on geological remote sensing and describe a suite of enhanced images using the barest earth Landsat mosaic for mapping surface mineralogy and geochemistry. These geological enhanced images provide improved inputs for predictive modelling of soil and rock properties over the Australian continent. In one case study, use of these products instead of existing Landsat TM band data to model chromium and sodium distribution using a random forest machine learning algorithm improved model performance by 28–46%. <b>Citation:</b> Wilford, J. and Roberts, D., 2020. Enhanced barest earth Landsat imagery for soil and lithological modelling. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
<div>Heavy minerals (HMs) are those with a specific gravity greater than 2.9 g/cc (e.g., anatase, zircon). They have been used successfully in mineral exploration programs outside Australia for decades [1 and refs therein]. Individual HMs and combinations, or co-occurrence, of HMs can be characteristic of lithology, degree of metamorphism, alteration, weathering or even mineralisation. These are termed indicator minerals, and have been used in exploration for gold, diamonds, mineral sands, nickel-copper, platinum group elements, volcanogenic massive sulfides, non-sulfide zinc, porphyry copper-molybdenum, uranium, tin-tungsten, and rare earth elements mineralization. Although there are proprietary HM sample assets held by industry in Australia, no extensive public-domain dataset of the natural distribution of HMs across the continent currently exists.</div><div> We describe a vision for a national-scale heavy mineral (HM) map generated through automated mineralogical identification and quantification of HMs contained in floodplain sediments from large catchments covering most of Australia [1]. These samples were collected as part of the National Geochemical Survey of Australia (NGSA; www.ga.gov.au/ngsa) and are archived in Geoscience Australia’s rock store. The composition of the sediments can be assumed to reflect the dominant rock and soil types within each catchment (and potentially those upstream), with the generally resistant HMs largely preserving the mineralogical fingerprint of their host protoliths through the weathering-transport-deposition cycle. </div><div> Underpinning this vision is a pilot project, focusing on a subset of NGSA to demonstrate the feasibility of the larger, national-scale project. Ten NGSA sediment samples were selected and both bulk and HM fractions were analysed for quantitative mineralogy using a Tescan® Integrated Mineral Analyzer (TIMA) at the John de Laeter Centre, Curtin University (Figure 1). Given the large and complex nature of the resultant HM dataset, we built a bespoke, cloud-based mineral network analysis (MNA) tool to visualise, explore and discover relationships between HMs, as well as between them and geological setting or mineral deposits. The pilot project affirmed our expectations that a rich and diverse mineralogical ecosystem will be revealed by expanding HM mapping to the continental scale. </div><div> A first partial data release in 2022 was the first milestone of the Heavy Mineral Map of Australia (HMMA) project. The area concerned is the Darling-Curnamona-Delamerian region of southeastern Australia, where the richly endowed Broken Hill mineral province lies. Here, we identified over 140 heavy minerals from 29 million individual mineral observations in 223 sediment samples. Using the MNA tool, one can quickly identify interesting base metal mineral associations and their spatial distributions (Figure 2).</div><div> We envisage that the Heavy Mineral Map of Australia and the MNA tool will contribute significantly to mineral prospectivity analysis and modelling in Australia, particularly for technology critical elements and their host minerals, which are central to the global economy transitioning to a more sustainable, decarbonised paradigm.</div><div><br></div>Figure 1. Distribution map of ten selected heavy minerals in the heavy mineral fractions of the ten NGSA pilot samples (pie charts), overlain on Australia’s geological regions (variable colors) [2]). Map projection: Albers equal area.</div><div><br></div><div>Figure 2. Graphical user interface for the Geoscience Australia MNA cloud-based visualization tool for the DCD project (https://geoscienceaustralia.shinyapps.io/HMMA-MNA/) showing the network for Zn minerals with the gahnite subnetwork highlighted (left) and the map of gahnite distribution (right).</div><div> <strong>References</strong></div><div>[1] Caritat et al., 2022, Minerals, 12(8), 961. https://doi.org/10.3390/min12080961 </div><div>[2] Blake & Kilgour, 1998, Geosci Aust. https://pid.geoscience.gov.au/dataset/ga/32366 </div><div><br></div>This Abstract was submitted/presented to the 2022 Mineral Prospectivity and Exploration Targeting (MinProXT 2022) webinar, Freiburg, Germany, 01 - 03 November (www.minproxt.com)
-
Analytical results and associated sample and analysis metadata from the analysis of minerals in earth material samples.