ENVIRONMENTAL SCIENCES
Type of resources
Keywords
Publication year
Topics
-
The Exploring for the Future program Showcase 2022 was held on 8-10 August 2022. Day 2 (9th August) included talks on two themes moderated by Marina Costelloe. Data and toolbox theme: - Data acquisition progress - Dr Laura Gow - Quantitative tool development: HiQGA.jl and HiPerSeis - Dr Anandaroop Ray - Data delivery advances: Underpinned by careful data curation - Mark Webster Geology theme: - Mapping Australia's geology: From the surface down to great depths - Dr Marie-Aude Bonnardot - Towards a national understanding of Groundwater - Dr Hashim Carey - Uncovering buried frontiers: Tennant Creek to Mount Isa - Anthony Schofield and Dr Chris Carson - Lithospheric characterisation: Mapping the depths of the Australian tectonic plate - Dr Marcus Haynes You can access the recording of the talks from YouTube here: Showcase Day 2 – Part 1 https://youtu.be/US6C-xzMsnI Showcase Day 2 – Part 2 https://youtu.be/ILRLXbQNnic
-
The Exploring for the Future program Virtual Roadshow was held on 7 July and 14-17 July 2020. The Minerals session of the roadshow was held on 14 July 2020 and consisted of the following presentations: Introduction - Richard Blewett Preamble - Karol Kzarnota Surface & Basins or Cover - Marie-Aude Bonnardot Crust - Kathryn Waltenberg Mantle - Marcus Haynes Zinc on the edge: New insights into sediment-hosted base metals mineral system - David Huston Scale reduction targeting for Iron-Oxide-Copper-Gold in Tennant Creek and Mt Isa - Anthony Schofield and Andrew Clark Economic Fairways and Wrap-up - Karol Czarnota
-
Activity for secondary and senior secondary students examining a hypothetical city and its vulnerability to volcanic hazard risk. Includes background information for teachers, PowerPoint presentation, student activity sheet and worked answers.
-
Many scientific talks by Geoscience Australia staff are published on YouTube. These documents provide summaries (‘crib sheets’) of the presentations along with easy access links to each part of the video. They are intended to help teachers of Year 11/12 classes learning about natural hazards
-
This animation shows how groundwater sampling is conducted. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by GA's data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what groundwater sampling equipment looks like, what the equipment measures and how scientists use the data.
-
Research was conducted aboard the RVIB Nathaniel B Palmer during NBP14-02 (29 January – 16 March 2014) across a >3000 km2 area. A ‘yoyo’ camera, with downward facing digital still and video cameras mounted within a tubular steel frame, was deployed on a coaxial cable to image the seafloor. Still images have been analysed for seafloor habitats. The Ocean Imaging Systems DSC 10000 digital still camera (10.2 megapixel, 20 mm, Nikon D-80 Camera) was contained within a titanium housing. Camera settings were: F-8, Focus 1.9 m, ASA-400. An Ocean Imaging Systems 3831 Strobe (200 W-S) was positioned 1 m from the camera at an angle of 26o from vertical. A Model 494 Bottom Contact Switch triggered the camera and strobe at 2.5 m above the seafloor, imaging ~ 4.8 m2 of seafloor. Imagery can be viewed and downloaded from the National Computing Infrastructure (NCI) data catalogue THREDDS: https://thredds.nci.org.au/thredds/catalog/fk1/NBP14_02_Sabrina_Shelf/catalog.html
-
This report presents geoscientific advice for the management of Antarctic Specially Protected Area (ASPA) No. 143, Marine Plain in the Vestfold Hills, East Antarctica. The advice is based on expert field observations and Remotely Piloted Aircraft (RPA) imagery of the ASPA as well as a review of observations and reports from previous visitors and scientific literature on human disturbance in polar environments. This report builds on an earlier report (McLennan 2017) which was written prior to any site visits by Geoscience Australia scientists. The advice addresses questions raised by the Australian Antarctic Division regarding the ASPA management plan, particularly relating to access via foot and helicopter, and the condition of two fossil sites. Key assumptions include that the rate of visitors to Marine Plain in the next decade will remain low and that the remaining faunal fossil specimens will stay in place. If there is a large increase in visitor numbers to Marine Plain or the fossil fauna are intended to be removed, further advice should be sought about the impacts to Marine Plain values.
-
To set out how Geoscience Australia will meet its vision for the Exploring for the Future program, we have summarised the ways our scientific activities, outputs and intended outcomes and impacts are linked, using the Impact Pathway diagram.
-
As part of the Great Artesian Basin (GAB) Project a pilot study was conducted in the northern Surat Basin, Queensland, to test the ability of existing and new geoscientific data and technologies to further improve our understanding of hydrogeological systems within the GAB, in order to support responsible management of basin water resources. This report presents selected examples from the preliminary interpretation of modelled airborne electromagnetic (AEM) data acquired as part of this pilot study. The examples are selected to highlight key observations from the AEM with potential relevance to groundwater recharge and connectivity. Previous investigations in the northern Surat Basin have suggested that diffuse groundwater recharge rates are generally low (in the order of only a few millimetres per year) across large areas of the GAB intake beds—outcropping geological units which represent a pathway for rainfall to enter the aquifers—and that, within key aquifer units, recharge rates and volumes can be heterogeneous. Spatial variability in AEM conductivity responses is identified across different parts of the northern Surat Basin, including within the key Hutton Sandstone aquifer. Consistent with findings from other studies, this variability is interpreted as potential lithological heterogeneity, which may contribute to reduced volumes of groundwater entering the deeper aquifer. The influence of geological structure on aquifer geometry is also examined. Larger structural zones are seen to influence both pre- and post-depositional architecture, including the presence, thickness and dip of hydrogeological units (or parts thereof). Folds and faults within the Surat Basin sequences are, in places, seen as potential groundwater divides which may contribute to compartmentalisation of aquifers. Discrete faults have the potential to influence inter-aquifer connectivity. The examples presented here demonstrate the utility of AEM models, in conjunction with other appropriate geophysical and geological data, for characterising potential recharge areas and pathways within the main GAB aquifer units, by helping to better define aquifer geometry, lithological heterogeneity and possible structural controls. Such assessments have the potential to further improve our understanding of groundwater recharge and flow path variability at local to regional scales. Acquisition of broader AEM data coverage across groundwater recharge areas, along with complementary geophysical, geological and hydrogeological data, would further assist in quantifying recharge variability, facilitating revised water balance estimates for the basin and thereby supporting GAB water resource management and policy decision-making.
-
In October 2019, opportunistic mapping and imagery of the Wessel Marine Park on the RV Investigator revealed a localised band of high biodiversity linked to a unique and culturally important geomorphological feature in the otherwise uniform seascape prevalent in the Wessel Marine Park. Our findings help contribute to an understanding of the values of a northern marine park, including an inventory of communities and habitats as well as potential relationships to geomorphic features and culturally important sites. This has national significance to the implementation of the northern marine park management plan, as well as informing future monitoring programs in northern Australia. <b>Citation:</b> Przeslawski R, Beaman R, Fava L, Nichol S, Woehler E, Yule C (2020). Wessel Marine Park: Post-Survey Report for INV2019T02. Report to the National Environmental Science Program, <i>Marine Biodiversity Hub</i>. Geoscience Australia.