From 1 - 10 / 76
  • We report four lessons from experience gained in applying the multiple-mode spatially-averaged coherency method (MMSPAC) at 25 sites in Newcastle (NSW) for the purpose of establishing shear-wave velocity profiles as part of an earthquake hazard study. The MMSPAC technique is logistically viable for use in urban and suburban areas, both on grass sports fields and parks, and on footpaths and roads. A set of seven earthquake-type recording systems and team of three personnel is sufficient to survey three sites per day. The uncertainties of local noise sources from adjacent road traffic or from service pipes contribute to loss of low-frequency SPAC data in a way which is difficult to predict in survey design. Coherencies between individual pairs of sensors should be studied as a quality-control measure with a view to excluding noise-affected sensors prior to interpretation; useful data can still be obtained at a site where one sensor is excluded. The combined use of both SPAC data and HVSR data in inversion and interpretation is a requirement in order to make effective use of low frequency data (typically 0.5 to 2 Hz at these sites) and thus resolve shear-wave velocities in basement rock below 20 to 50 m of soft transported sediments.

  • The Oaklands-Coorabin Coalfield in the Riverina Division of New South Wales has been known for many years. Seismic refraction tests were carried out on a number of sections to assist in the interpretation of the gravity results during July and Sepetember, 1949.

  • Geoscience Australia acquired the Canning Coastal Deep Crustal Seismic Survey in 2014. The survey involved the acquisition of seismic reflection and gravity data along two traverses, 14GA-CC1 (562km) and 14GA-CC2 (143km) between Port Hedland and Derby, WA. The purpose of the survey was to image the crustal architecture of the geology underlying the Canning Basin and its relationship to the boundaries between the crystalline hard rock areas of the North (Kimberley) and West Australian (Pilbara) cratons. As well as establishing the subsurface extent of the Canning Basin and the extent and nature of its sub-basins and troughs. The project was collaboration between the Geological Survey of Western Australia and Geoscience Australia with funding from the Western Australian Royalty for Regions Scheme. Raw data for this survey are available on request from clientservices@ga.gov.au

  • The preliminary investigation was made when the Bureaut s seismic party was held up by flooded rivers, while on its way t o Christmas Creek in May, 1954. Results show that the seismic aethod is applicable to the Broome area, and that a sedimentary section of the order of 12,500 feet exists. They further show that a syncline and anticline not known from the surface geology may possibly exist at depth.

  • This OGC WFS web service (generated by Geoserver) serves data from the Geoscience Australia Rock Properties database. The database stores the results of measurements of physical properties of rock and regolith specimens, including such properties as mass density, magnetic susceptibility, magnetic remanence and electrical conductivity. The database also records analytical process information such as method and instrument details where possible.

  • Seismic reflection traverses were surveyed across the Perth Basin at Cookernup, W.A. These traverses were planned to find the thickness and dip of the Basin sediments adjacent to the Darling Scarp and to discover any faulting or folding within them; also to determine the applicability of the seismic method as a tool for both regional and detailed investigation in this area. Seismic refraction traverses were surveyed to help in the solution of problems encountered in the interpretation of the reflection cross-sections. The survey indicated a considerable thickness of sediments about 20,000 ft, at the eastern margin of the Basin near the Darling Scarp, and suggested tectonic structure that is not indicated in surface geology, The reflection traverses indicated that sediments (presumably Lower Palaeozoic or Precambrian) lying deep in the Perth Basin may continue underneath the Darling Scarp and abut the granitic gneisses etc. of the Western Australian Shield on an overthrust fault plane. The overthrust fault, if it exists, does not reach the surface, but is covered to a depth of possibly some few hundred feet by younger sediments and also by alluvium eroded from the Darling Scarp. Some reflection and refraction shooting was done in an attempt to test this and other hypotheses, but the results crc inconclusive. Gravity results strongly suggest a normal fault, and if normal faulting is the case, the reflections from beneath the outcropping basement are possibly derived from shear zones, Some probable 'reflected refractions' were also observed. There is scope for further seismic testing but it is considered that conclusive evidence could only be provided by drilling.

  • Geoscience Australia acquired the Papunya Seismic Reflection Survey in 2010. The survey involved the acquisition of high resolution seismic reflection data along a single 11.5km traverse (10GA-PA1). The purpose of the survey was to obtain information on key palaeovalley characteristics for potential groundwater studies. This dataset contains seismic data and images only, a full report on the results of the palaeovalley study can be found in GA Record 2012/09. Raw data for this survey are available on request from clientservices@ga.gov.au

  • Reflection and refraction seismic work was done in 1960 to complete a reconnaissance survey which was commenced in 1959 across the northern part of the Surat Basin. A reconnaissance line now extends in an easterly direction from 30 miles west of Surat to Jondaryan, and this line is also tied to the geologically well-known Roma area. Two good marker horizons have been established in the seismic work - one a strong reflector and the other a refractor in which the velocity averages 19,000 ft/sec and which may represent basement. A deep trough of sediments, possibly 20,000 ft thick at Meandarra, exists between Surat and Tara, and there is a large uplift west of Tara. The eastern margin of this large trough is 12 miles east of Tara, but sediments about 4000 ft thick probably continue to the east, at least as far as Jondaryan.

  • The Bureau of Mineral Resources seismic party carried out a seismic survey in the Bonaparte Gulf area of north-western Australia between 16th June and 13th October, 1956. The initial objects of the survey were to obtain regional information on the thickness of the sedimentary rocks and on the tectonics of the Bonaparte Gulf Basin, and to establish the applicability of the seismic method in the area. During the course of the survey the party was directed to transfer its attentions to obtaining some detailed information on the Spirit Hill Anticline. This latter work was carried out in response to an application by Westralian Oil Pty. Ltd., which was anxious to select sites for a test boring programme. The seismic results indicate a maximum thickness of sediments of about 20,000 feet in the Carlton Basin and 14,000 feet in the Burt Range Basin. The rocks in both these basins have been folded to a considerable extent and the reflections suggest unconformities within both basins. The seismic reflection method proved successful in indicating geological structure at depth in most of the areas tested.

  • On 12th July 1960, a velocity survey of the A.A.O. Pickanjinnie No. 1 bore was made by the Bureau of Mineral Resources. The bore had been drilled to a depth of 5218 ft and was surveyed to the bottom. The average velocities for the Mesozoic rocks and the Timbury Hills Formation are similar to those measured in the Timbury Hill No. 2 bore. However, it seems impossible to correlate individual units within the Mesozoic sequence according to their velocity.