From 1 - 10 / 91
  • The Oceanic Shoals survey (SOL5650, GA survey 339) was conducted on the R.V. Solander in collaboration with Geoscience Australia, the Australian Institute of Marine Science (AIMS), University of Western Australia and the Museum and Art Gallery of the Northern Territory between 12 September - 5 October, 2012. This dataset comprises an interpreted geomorphic map. Interpreted local-scale geomorphic maps were produced for each survey area in the Oceanic Shoals Commonwealth Marine Reserve (CMR) using multibeam bathymetry and backscatter grids at 2 m resolution and bathymetric derivatives (e.g. slope; 1-m contours). Six geomorphic units; bank, depression, mound, plain, scarp and terrace were identified and mapped using definitions suitable for interpretation at the local scale (nominally 1:10 000). Maps and polygons were manual digitised in ArcGIS using the spatial analyst and 3D analyst toolboxes. For further information on the geomorphic mapping methods please refer to Appendix N of the post-survey report, published as Geoscience Australia Record 2013/38: Nichol, S.L., Howard, F.J.F., Kool, J., Stowar, M., Bouchet, P., Radke, L., Siwabessy, J., Przeslawski, R., Picard, K., Alvarez de Glasby, B., Colquhoun, J., Letessier, T. & Heyward, A. 2013. Oceanic Shoals Commonwealth Marine Reserve (Timor Sea) Biodiversity Survey: GA0339/SOL5650 Post Survey Report. Record 2013/38. Geoscience Australia: Canberra. (GEOCAT #76658).

  • Geoscience Australia undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin, in May 2013. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Jamieson Formation (the seal unit overlying the main reservoir). This dataset comprises total chlorin concentrations and chlorin indices from the upper 2cm of seabed sediments.

  • This resource contains sediment data for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012 on RV Solander (survey GA0339/SOL5650). Seabed sediment samples were collected from four survey areas by either a Smith McIntyre grab or box corer at 62 stations, divided between Area 1 (n=22), Area 2 (n=17), Area 3 (n=21) and Area 4 (n=2). The Oceanic Shoals Commonwealth Marine Reserve survey was undertaken as an activity within the Australian Government's National Environmental Research Program Marine Biodiversity Hub and was the key component of Research Theme 4 - Regional Biodiversity Discovery to Support Marine Bioregional Plans. Hub partners involved in the survey included the Australian Institute of Marine Science, Geoscience Australia, the University of Western Australia, Museum Victoria and the Museum and Art Gallery of the Northern Territory. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; sub-bottom acoustic profiles; physical samples of seabed sediments, infauna and epibenthic biota; towed underwater video and still camera observations of seabed habitats; baited video observations of demersal and pelagic fish, and; oceanographic measurements of the water column from CTD (conductivity, temperature, depth) casts and from deployment of sea surface drifters. Further information on the survey is available in the post-survey report published as Geoscience Australia Record 2013/38 (Nichol et al. 2013).

  • In May 2013, Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) undertook a collaborative seabed mapping survey (GA0340/ SOL5754) on the Leveque Shelf, a distinct geological province within the Browse Basin, offshore Western Australia. The purpose of the survey was to acquire geophysical and biophysical data on seabed environments over a previously identified potential CO2 injection site to better understand the overlying seabed habitats and to assess potential for fluid migration to the seabed. Mapping and sampling was undertaken across six areas using multibeam and single beam echosounders, sub-bottom profilers, sidescan sonar, underwater towed-video, gas sensors, water column profiler, grab samplers, and vibrocorer. Over 1070 km2 of seabed and water column was mapped using the multibeam and single beam echosounder, in water depths ranging between 40 and 120 m. The sub-surface was investigated using the multichannel and the parametric sub-bottom profilers along lines totalling 730 km and 1547 km in length respectively. Specific seabed features were investigated over 44 line km using the sidescan sonar and physically and sampled at 58 stations. Integration of this newly acquired data with existing seismic data will provide new insights into the geology of the Leveque Shelf. This work will contribute to the Australian Government's National CO2 Infrastructure Plan (NCIP) by providing key seabed environmental and geological data to better inform the assessment of the CO2 storage potential in this area of the Browse Basin. This catalogue entry refers to an interpreted geomorphic map, mapped at 1:10 000 scale. Geomorphic mapping was completed using a combination of semi-automated feature extraction and hand digitisation from bathymetry and backscatter grids collected during the survey along with their derivatives and reference to broader scale geomorphic maps (Heap and Harris, 2008).

  • In May 2013, Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) undertook a collaborative seabed mapping survey (GA0340/ SOL5754) on the Leveque Shelf, a distinct geological province within the Browse Basin, offshore Western Australia. The purpose of the survey was to acquire geophysical and biophysical data on seabed environments over a previously identified potential CO2 injection site to better understand the overlying seabed habitats and to assess potential for fluid migration to the seabed. Mapping and sampling was undertaken across six areas using multibeam and single beam echosounders, sub-bottom profilers, sidescan sonar, underwater towed-video, gas sensors, water column profiler, grab samplers, and vibrocorer. Over 1070 km2 of seabed and water column was mapped using the multibeam and single beam echosounder, in water depths ranging between 40 and 120 m. The sub-surface was investigated using the multichannel and the parametric sub-bottom profilers along lines totalling 730 km and 1547 km in length respectively. Specific seabed features were investigated over 44 line km using the sidescan sonar and physically and sampled at 58 stations. Integration of this newly acquired data with existing seismic data will provide new insights into the geology of the Leveque Shelf. This work will contribute to the Australian Government's National CO2 Infrastructure Plan (NCIP) by providing key seabed environmental and geological data to better inform the assessment of the CO2 storage potential in this area of the Browse Basin. This data package brings together a suite of datasets which describe the seabed environments and shallow geology of the Leveque Shelf, Browse Basin.

  • Geoscience Australia marine reconnaissance survey GA2476 to the west Australian continental margin was undertaken as part of the Australian Government's Offshore Energy Program between 25 October 2008 and 19 January 2009 using the German research vessel RV Sonne. The survey acquired geological, geophysical, oceanographic and biological data over poorly known areas of Australia's western continental margin in order to improve knowledge of frontier sedimentary basins and marginal plateaus, and allow assessment of their petroleum prospectivity and environmental significance. Four key areas were targeted: the Zeewyck and Houtman sub-basins (Perth Basin), the Cuvier margin (northwest of the Southern Carnarvon Basin), and the Cuvier Plateau (a sub-feature of the Wallaby Plateau). These areas were mapped using multi-beam sonar, shallow seismic, magnetics and gravity. Over the duration of the survey a total of 229,000 km2 (26,500 line-km) of seabed was mapped with the multibeam sonar, 25,000 line-km of digital shallow seismic reflection data and 25,000 line-km of gravity and magnetic data. Sampling sites covering a range of seabed features were identified from the preliminary analysis of the multi-beam bathymetry grids and pre-existing geophysical data (seismic and gravity). A variety of sampling equipment was deployed over the duration of the survey, including ocean floor observation systems (OFOS), deep-sea TV controlled grab (BODO), boxcores, rock dredges, conductivity-temperature depth profilers (CTD), and epibenthic sleds. Different combinations of equipment were used at each station depending on the morphology of the seabed and objectives of each site. A total of 62 stations were examined throughout the survey, including 16 over the Houtman Sub-basin, 16 over the Zeewyck Subbasin, 13 in the Cuvier margin, 12 over the Cuvier Plateau and four in the Indian Ocean. This dataset comprises total chlorin concentrations and chlorin indices measured on the upper 2 cm of seabed sediments. For more information: Daniell, J., Jorgensen, D.C., Anderson, T., Borissova, I., Burq, S., Heap, A.D., Hughes, M., Mantle, D., Nelson, G., Nichol, S., Nicholson, C., Payne, D., Przeslawski, R., Radke, L., Siwabessy, J., Smith, C., and Shipboard Party, (2010). Frontier Basins of the West Australian Continental Margin: Post-survey Report of Marine Reconnaissance and Geological Sampling Survey GA2476. Geoscience Australia, Record 2009/38, 229pp

  • Geoscience Australia marine reconnaissance survey GA2476 to the west Australian continental margin was undertaken as part of the Australian Government's Offshore Energy Program between 25 October 2008 and 19 January 2009 using the German research vessel RV Sonne. The survey acquired geological, geophysical, oceanographic and biological data over poorly known areas of Australia's western continental margin in order to improve knowledge of frontier sedimentary basins and marginal plateaus, and allow assessment of their petroleum prospectivity and environmental significance. Four key areas were targeted: the Zeewyck and Houtman sub-basins (Perth Basin), the Cuvier margin (northwest of the Southern Carnarvon Basin), and the Cuvier Plateau (a sub-feature of the Wallaby Plateau). These areas were mapped using multi-beam sonar, shallow seismic, magnetics and gravity. Over the duration of the survey a total of 229,000 km2 (26,500 line-km) of seabed was mapped with the multibeam sonar, 25,000 line-km of digital shallow seismic reflection data and 25,000 line-km of gravity and magnetic data. Sampling sites covering a range of seabed features were identified from the preliminary analysis of the multi-beam bathymetry grids and pre-existing geophysical data (seismic and gravity). A variety of sampling equipment was deployed over the duration of the survey, including ocean floor observation systems (OFOS), deep-sea TV controlled grab (BODO), boxcores, rock dredges, conductivity-temperature depth profilers (CTD), and epibenthic sleds. Different combinations of equipment were used at each station depending on the morphology of the seabed and objectives of each site. A total of 62 stations were examined throughout the survey, including 16 over the Houtman Sub-basin, 16 over the Zeewyck Subbasin, 13 in the Cuvier margin, 12 over the Cuvier Plateau and four in the Indian Ocean. This dataset comprises total chlorin concentrations and chlorin indices measured on the upper 2 cm of seabed sediments. For more information: Daniell, J., Jorgensen, D.C., Anderson, T., Borissova, I., Burq, S., Heap, A.D., Hughes, M., Mantle, D., Nelson, G., Nichol, S., Nicholson, C., Payne, D., Przeslawski, R., Radke, L., Siwabessy, J., Smith, C., and Shipboard Party, (2010). Frontier Basins of the West Australian Continental Margin: Post-survey Report of Marine Reconnaissance and Geological Sampling Survey GA2476. Geoscience Australia, Record 2009/38, 229pp

  • Geoscience Australia undertook a marine survey of the Vlaming Sub-basin in March and April 2012 to provide seabed and shallow geological information to support an assessment of the CO2 storage potential of this sedimentary basin. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The Vlaming Sub-basin is located offshore from Perth, Western Australia, and was previously identified by the Carbon Storage Taskforce (2009) as potentially highly suitable for CO2 storage. The principal aim of the Vlaming Sub-basin marine survey (GA survey number GA334) was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Vlaming Sub-basin that may extend up to the seabed. The survey also mapped seabed habitats and biota in the areas of interest to provide information on communities and biophysical features that may be associated with seepage. This research addresses key questions on the potential for containment of CO2 in the Early Cretaceous Gage Sandstone (the basin's proposed CO2 storage unit) and the regional integrity of the South Perth Shale (the seal unit that overlies the Gage Sandstone). This dataset comprises sediment oxygen demand measurments from seabed sediments.

  • Geoscience Australia marine reconnaissance survey GA2476 to the west Australian continental margin was undertaken as part of the Australian Government's Offshore Energy Program between 25 October 2008 and 19 January 2009 using the German research vessel RV Sonne. The survey acquired geological, geophysical, oceanographic and biological data over poorly known areas of Australia's western continental margin in order to improve knowledge of frontier sedimentary basins and marginal plateaus, and allow assessment of their petroleum prospectivity and environmental significance. Four key areas were targeted: the Zeewyck and Houtman sub-basins (Perth Basin), the Cuvier margin (northwest of the Southern Carnarvon Basin), and the Cuvier Plateau (a sub-feature of the Wallaby Plateau). These areas were mapped using multi-beam sonar, shallow seismic, magnetics and gravity. Over the duration of the survey a total of 229,000 km2 (26,500 line-km) of seabed was mapped with the multibeam sonar, 25,000 line-km of digital shallow seismic reflection data and 25,000 line-km of gravity and magnetic data. Sampling sites covering a range of seabed features were identified from the preliminary analysis of the multi-beam bathymetry grids and pre-existing geophysical data (seismic and gravity). A variety of sampling equipment was deployed over the duration of the survey, including ocean floor observation systems (OFOS), deep-sea TV controlled grab (BODO), boxcores, rock dredges, conductivity-temperature depth profilers (CTD), and epibenthic sleds. Different combinations of equipment were used at each station depending on the morphology of the seabed and objectives of each site. A total of 62 stations were examined throughout the survey, including 16 over the Houtman Sub-basin, 16 over the Zeewyck Subbasin, 13 in the Cuvier margin, 12 over the Cuvier Plateau and four in the Indian Ocean. This dataset comprises total chlorin concentrations and chlorin indices measured on the upper 2 cm of seabed sediments. For more information: Daniell, J., Jorgensen, D.C., Anderson, T., Borissova, I., Burq, S., Heap, A.D., Hughes, M., Mantle, D., Nelson, G., Nichol, S., Nicholson, C., Payne, D., Przeslawski, R., Radke, L., Siwabessy, J., Smith, C., and Shipboard Party, (2010). Frontier Basins of the West Australian Continental Margin: Post-survey Report of Marine Reconnaissance and Geological Sampling Survey GA2476. Geoscience Australia, Record 2009/38, 229pp

  • The Petrel Sub-basin Marine Environmental Survey GA-0335, (SOL5463) was undertaken by the RV Solander during May 2012 as part of the Commonwealth Government's National Low Emission Coal Initiative (NLECI). The survey was undertaken as a collaboration between the Australian Institute of Marine Science (AIMS) and GA. The purpose was to acquire geophysical and biophysical data on shallow (less then 100m water depth) seabed environments within two targeted areas in the Petrel Sub-basin to support investigation for CO2 storage potential in these areas. This dataset comprises an interpreted geomorphic map. Interpreted local-scale geomorphic maps were produced for each survey area in the Petrel Sub-basin using multibeam bathymetry and backscatter grids at 2 m resolution and bathymetric derivatives (e.g. slope; 1-m contours). Five geomorphic units; bank, plain, ridge, terrace and valley, were identified and mapped using definitions suitable for interpretation at the local scale (nominally 1:10 000). Maps and polygons were manual digitised in ArcGIS using the spatial analyst and 3D analyst toolboxes.