From 1 - 10 / 26
  • This web map service provides visualisations of the outputs from the five scenarios assessed in the analysis of prospective hydrogen production regions of Australia. Datasets used as inputs into the hydrogen production prospectivity analysis have been sourced from the Department of Environment and Energy, PSMA Australia, Garrad Hassan Pacific Pty. Ltd., Australian Bureau of Meteorology, Department of Resources Energy and Tourism, Queensland Department of Employment, Economic Development and Innovation, NSW Department of Planning, Industry and Environment, and Geoscience Australia.

  • <div>The Proterozoic basins of northern Australia have been the focus of regional hydrocarbon prospectivity studies undertaken by the Exploring for the Future&nbsp;program dedicated to increasing investment in resource exploration in northern Australia. As part of this program, a compilation of the compound-specific isotopic compositions of linear alkanes in source extracts, oils and oil stains from 21 boreholes&nbsp;of the greater McArthur Basin has been completed. The samples were analysed in Geoscience Australia’s Isotope and Organic Geochemistry Laboratory and the stable carbon and hydrogen isotopic data of individual alkanes are released in this report. </div>

  • Australia is well-positioned to remain a global energy supplier and be a leader in driving efforts to achieve net-zero greenhouse gas emissions. Australia has the potential to produce a range of low emissions energy commodities such as geothermal energy, natural and manufactured hydrogen, and natural gas linked with carbon capture and storage. Our ample solar and wind energy resources also support the deployment of renewable energy technologies across the country. Our geological systems supply the raw materials — such as several of the critical minerals and strategic materials — that are needed to develop the infrastructure and manufacture the batteries and technologies that will support the energy transition. New and emerging opportunities have been identified for energy storage for energy produced from renewable sources, such as through manufacturing hydrogen, hydrogen storage in underground salt caverns, and compressed air energy storage. Australia is recognised for having a large potential to geologically store carbon dioxide. Carbon capture and storage technology can support industries that find it difficult to abate their emissions, including efforts to remove carbon dioxide directly from the atmosphere through use of direct air capture technology. Understanding the prospectivity for these resources and the current and emerging energy storage technologies will help to accelerate Australia's journey to a net-zero economy. As Australia’s national public sector geoscience organisation, Geoscience Australia continues to undertake national and regional research and data acquisition, to provide precompetitive data that underpins decision-making by governments and industry and attracts future investment.

  • The Source Rock and Fluids Atlas delivery and publication services provide up-to-date information on petroleum (organic) geochemical and geological data from Geoscience Australia's Organic Geochemistry Database (ORGCHEM). The sample data provides the spatial distribution of petroleum source rocks and their derived fluids (natural gas and crude oil) from boreholes and field sites in onshore and offshore Australian basins. The services provide characterisation of source rocks through the visualisation of Pyrolysis, Organic Petrology (Maceral Groups, Maceral Reflectance) and Organoclast Maturity data. The services also provide molecular and isotopic characterisation of source rocks and petroleum through the visualisation of Bulk, Whole Oil GC, Gas, Compound-Specific Isotopic Analyses (CSIA) and Gas Chromatography-Mass Spectrometry (GCMS) data tables. Interpretation of these data enables the characterisation of petroleum source rocks and identification of their derived petroleum fluids that comprise two key elements of petroleum systems analysis. The composition of petroleum determines whether or not it can be an economic commodity and if other processes (e.g. CO2 removal and sequestration; cryogenic liquefaction of LNG) are required for development.

  • The Source Rock and Fluids Atlas delivery and publication services provide up-to-date information on petroleum (organic) geochemical and geological data from Geoscience Australia's Organic Geochemistry Database (ORGCHEM). The sample data provides the spatial distribution of petroleum source rocks and their derived fluids (natural gas and crude oil) from boreholes and field sites in onshore and offshore Australian basins. The services provide characterisation of source rocks through the visualisation of Pyrolysis, Organic Petrology (Maceral Groups, Maceral Reflectance) and Organoclast Maturity data. The services also provide molecular and isotopic characterisation of source rocks and petroleum through the visualisation of Bulk, Whole Oil GC, Gas, Compound-Specific Isotopic Analyses (CSIA) and Gas Chromatography-Mass Spectrometry (GCMS) data tables. Interpretation of these data enables the characterisation of petroleum source rocks and identification of their derived petroleum fluids that comprise two key elements of petroleum systems analysis. The composition of petroleum determines whether or not it can be an economic commodity and if other processes (e.g. CO2 removal and sequestration; cryogenic liquefaction of LNG) are required for development.

  • This web service delivers data from an aggregation of sources, including several Geoscience Australia databases (provinces (PROVS), mineral resources (OZMIN), energy systems (AERA, ENERGY_SYSTEMS) and water (HYDROGEOLOGY). Information is grouped based on a modified version of the Australian Bureau of Statistics (ABS) 2021 Indigenous Regions (IREG). Data covers population centres, top industries, a regional summary, groundwater resources and uses, energy production and potential across six sources and two energy storage options. Mineral production and potential covers 36 commodities that are grouped into 13 groups.

  • This web map service provides visualisations of the outputs from the five scenarios assessed in the analysis of prospective hydrogen production regions of Australia. Datasets used as inputs into the hydrogen production prospectivity analysis have been sourced from the Department of Environment and Energy, PSMA Australia, Garrad Hassan Pacific Pty. Ltd., Australian Bureau of Meteorology, Department of Resources Energy and Tourism, Queensland Department of Employment, Economic Development and Innovation, NSW Department of Planning, Industry and Environment, and Geoscience Australia.

  • Underground halite, or salt, deposits can potentially be used for large scale storage of hydrogen. This dataset maps the spatial distribution of known, thick underground halite deposits across Australia. Halite sequences included in this map are at least 100 metres thick (to ensure sufficient storage capacity) and are located onshore. Known, thick halite deposits are located in the Carnarvon, Amadeus and Adavale basins. Underground halite deposits have not been extensively explored for across Australia and additional halite deposits suitable for large scale hydrogen storage may exist. Geoscience Australia, through the Exploring for the Future (EFTF) program, is therefore exploring for underground halite deposits to further our understanding of sub-surface halite distribution for potential hydrogen storage. This map may be updated periodically to reflect new halite discoveries found during the EFTF program. This dataset is published with the permission of the CEO, Geoscience Australia.

  • This short film promotes Geoscience Australia's online and publicly accessible hydrogen data products. The film steps through the functionality of GA's Australian Hydrogen Opportunities Tool (AusH2), and describes the upcoming Hydrogen Economic Fairways Tool which has been created through a collaborative effort with Monash University.

  • Depleted gas fields can potentially be used for large scale storage of gases such as carbon dioxide, natural gas and hydrogen. Onshore Depleted Gas Fields This dataset maps the spatial distribution of depleted gas fields across onshore Australia. Underground Gas Storage Facilities This dataset maps the spatial distribution of underground gas storage facilities across Australia. Underground gas storage facilities utilise depleted gas fields for the seasonal storage of natural gas in Australia. The injection, withdrawal and storage capacities of each underground gas storage facility is included within this dataset. This dataset is published with the permission of the CEO, Geoscience Australia.