From 1 - 10 / 23
  • This black and white 64 page education resource examines the dynamic nature of Earth's climate (past and present) and its many influencing factors. Includes student activities. Suitable for secondary Years 7-12.

  • Diatom assemblages in sandy deposits of the 2004 tsunami at Phra Thong Island, Thailand may provide clues to flow conditions during the tsunami. The tsunami deposits contain one or more beds that fine upward, commonly from medium sand to silty very fine sand. Diatom assemblages of the lowermost portion of the deposit predominantly comprise of unbroken beach and subtidal species that live attached to sand grains. The dominant taxa shift to marine plankton species in the middle of the bed and to a mix of freshwater, brackish, and marine species near the top. These trends are consistent with expected changes in current velocities of tsunami through time. During high current velocities, medium sand is deposited; only beach and subtidal benthic diatoms attached to sediment can be incorporated into the tsunami deposit. High shear velocity keeps finer material, including planktonic diatoms in suspension. With decreasing current velocities, finer material including marine plankton can be deposited. Finally, during the lull between tsunami waves, the entrained freshwater, brackish, and marine species settle out with mud and plant trash. Low numbers of broken diatoms in the lower medium sand implies rapid entrainment and deposition, whilst selective breakage of marine plankton (Thalassionema nitzschioides, and Thalassiosira and Coscinodiscus spp.) in the middle portion of the deposit probably results from abrasion in the turbulent current before deposition.

  • This CD-ROM consists of 15 images and explanatory text detailing the nature of dinosaur fossils from Southern Australia as determined by scientists working along Australia's southeast coast. Find out about the dinosaurs that lived at polar latitudes between 120 to 110 million years ago and the fascinating methods they developed to cope with the climate of that region. The images include actual fossils discovered and reconstructions of dinosaurs and the plants and animals with which these dinosaurs were associated. Suitable for primary Years 5-6 an secondary Years 7-12.

  • Much of the deep sea comprises soft-sediment habitats dominated by low abundances of small infauna, and traditional methods of biological sampling may therefore fail to sufficiently quantify biodiversity. During feeding and burrowing, many deep sea animals bioturbate the sediment, leaving signs of their activities called lebensspuren ('life traces'). In this study, we use three criteria to assess whether the quantification of lebensspuren from high resolution still images is an appropriate technique to broadly quantify biological activity in the deep sea: 1) The ability to differentiate biological assemblages between geographic regions; 2) the ability to reveal known biological patterns across environmental gradients; and 3) correlation with other methods of biological characterisation often used in the deep sea (e.g. video). Lebensspuren were quantified using a univariate measure of track richness and a multivariate measure of lebensspuren assemblages from the eastern (1712 images, 13 stations) and western (949 images, 11 stations) Australian margins. A total of 46 lebensspuren types were identified, including those matching named trace fossils. Assemblages were significantly different between the two regions, with five lebensspuren types accounting for over 95% of the differentiation (ovoid pinnate trace, crater row, spider feature, matchstick feature, mesh feature). Track richness in the combined margins dataset was correlated to depth, chlorin index (i.e. organic freshness), and possibly mud, although the strength of the relationships varied according to the dataset used. There was no relationship to total organic carbon. Lebensspuren richness from still images was significantly related to lebensspuren from video but not to occurrence of epifauna. Based on these results, the quantification of lebensspuren from still images seems an appropriate measure to broadly characterise biological activity in deep sea soft sediment ecosystems.

  • Early Middle Cambrian faunas from the Jigaimara Formation from Elcho, Howard and Banyan Islands in the Arafura Basin, Northern Territory are analysed. They include the species: Pagetia hainesi sp. nov., P. aff. edura Jell, P. sp. indet., Xystridura templetonensis (Chapman), X. remorata Opik, X. ?filifera Opik, X. sp. indet., ptychoparioid sp. 1, ptychoparioid sp. 2, Oryctocephalites ?reynoldsi (Reed), Arthricocephalus sp. nov. and ?Itagnostus sp.. All indicate an age of early Templetonian (i.e. predating T. gibbus), and indicate a close similarity with the fauna of the Beetle Creek Formation of western Queensland

  • This collection consists of type specimens, illustrated or referred specimens which have been published in the scientific literature. Type specimens that have been published in literature of a wide variety of different macro and micro fossils. The Commonwealth Palaeontological Collection is a collection of type, illustrated referred or cited specimens of fossils which have been published in the scientific literature. This Collection was initiated by Federal Cabinet decision during the 1920s. When fossil specimens of any new species of animal or plant are found, for it to be of any future use in biostratigraphy, it of course must be analysed.

  • <p><b> Please note: This record has been made available internally for reference only</b> <p>PIMS is a search tool for discovery of survey and well data assets and physical samples held by the Geoscience Australia Repository. Data can be ordered and viewing of samples can be arranged via an online form. Although this is public data, fees are charged to cover the cost of transcription and delivery.

  • This black and white resource is an 18 page booklet including geological time, rock clocks, the age of famous Australian places, Australia on the move, Australian volcanoes, Ice Ages, Ancient Australian life, how fossils form and some common Australian fossils. Includes student activities suitable for primary Years K-6.

  • The black and white 55 page fossils resource contains information about what fossils are, what parts of living things become fossilised and the most common fossil groups. The process of fossilisation and geological time are also covered. 24 informative illustrated fact sheets cover a wide variety of plant, animal and trace fossils. Includes student activities suitable for primary Years 3-6 and secondary Years 7-10.