electromagnetics
Type of resources
Keywords
Publication year
Topics
-
AusAEM-WA, Southwest-Albany Airborne Electromagnetic Survey Blocks:: SkyTEM® airborne electromagnetic data and GALEI inversion conductivity estimates The accompanying data package, titled “AusAEM-WA, Southwest-Albany Airborne Electromagnetic Survey Blocks:: SkyTEM® airborne electromagnetic data and GALEI inversion conductivity estimates”, was released on 4 November 2021 by Geoscience Australia (GA) and the Geological Survey of Western Australia. The data represents the first phase of the AusAEM2020 (WA) survey flown with a with a rotary aircraft contracted to Geoscience Australia, using the SkyTEM® airborne electromagnetic system. The survey was flown at a 20-kilometre nominal line spacing over the most south-western part and down to the southern coast of Western Australia. The area encompasses close to 12,500 line kilometres of newly acquired airborne electromagnetic geophysical data. This package contains the total (~12,500) of survey data which have been quality-controlled, processed, modelled and inverted both by the contractor and by GA. The survey was divided in four blocks, flown east-west and north-south direction. Since the survey covers two standard UTM zones 50 and 51, wherever projected Map Grid of Australia (MGA) easting and northing coordinates are used they are referenced to MGA Zone 50. All four block’s projected grid coordinates have been supplied in GDA2020 MGA Zone 50 datum, and contain the geodetic latitude and longitude WGS84 coordinate fields Geoscience Australia and Western Australia (Department of Mines, Industry Regulation and Safety) commissioned the AusAEM 2020 survey as part of the national airborne electromagnetic acquisition program, to complete 20km line separation AEM coverage over WA. The program is designed to deliver freely available pre-competitive geophysical data to assist in the investigation and discovery of potential mineral, energy and groundwater resources within Australia. Funding for the survey came from the Western Australian government’s Exploration Incentive Scheme. Geoscience Australia managed the survey data acquisition, processing, contracts, quality control of the survey and generated the inversion products included in the data package. The data release package contains 1. A data release package summary PDF document. 2. The survey logistics and processing report. 3. KML and Shapefiles for the regional flight lines. 4. Final processed point located line data in ASEG-GDF2 format. 5. Conductivity estimates generated by SkyTEM’s Workbench. 6. Conductivity estimates and products (suitable for various 3D packages) generated by Geoscience Australia's Layered Earth Inversion algorithm.
-
<div><strong>Yathong, Forbes, Dubbo, and Coonabarabran Airborne Electromagnetic Survey Blocks.</strong></div><div><br></div><div>Geoscience Australia (GA), in collaboration with the Geological Survey of New South Wales (GNSW), conducted an airborne electromagnetic (AEM) survey from April to June 2023. The survey spanned from the north-eastern end of the Yathong-Ivanhoe Trough and extended across the Forbes, Dubbo, and Coonabarabran regions of New South Wales. A total of 15, 090-line kilometres of new AEM and magnetic geophysical data were acquired. This survey was entirely funded by GSNSW and GA managed acquisition, quality control, processing, modelling, and inversion of the AEM data.</div><div><br></div><div>The survey was flown by Xcalibur Aviation (Australia) Pty Ltd using a 6.25 Hz HELITEM® AEM system. The survey blocks were flown at 2500-metre nominal line spacings, with variations down to 100 metres in the Coonabarabran block. It was flown following East-West line directions. Xcalibur also processed the acquired data. This data package includes the acquisition and processing report, the final processed AEM data, and the results of the contractor's conductivity-depth estimates. The data package also contains the results and derived products from a 1D inversion by Geoscience Australia with its own inversion software.</div><div><br></div><div>The survey will be incorporated and become part of the national AusAEM airborne electromagnetic acquisition program, which aims to provide geophysical information to support investigations of the regional geology and groundwater.</div><div><br></div><div><strong>The data release package contains:</strong></div><div><br></div><div>1. A data release package <strong>summary PDF document</strong></div><div>2. The <strong>survey logistics and processing report</strong> and HELITEM® system specification files</div><div>3. <strong>Final processed point located line data</strong> in ASEG-GDF2 format for the five areas</div><div> -final processed dB/dt electromagnetic, magnetic and elevation data</div><div> -final processed B field electromagnetic, magnetic and elevation data</div><div><strong> <em>Conductivity estimates generated by Xcalibur’s inversion </em></strong></div><div> -point located conductivity-depth line data output from the inversion in ASEG-GDF2 format</div><div> -graphical (PDF) multiplot conductivity stacks and section profiles for each flight line</div><div> -graphical (PNG) conductivity sections for each line</div><div> -grids generated from the Xcalibur’s inversion in ER Mapper® format (layer conductivities slices, DTM, X & Z component for each of the 25 channels, time constants, TMI)</div><div>4.<strong> ESRI shape and KML</strong> (Google Earth) files for the flight lines and boundary</div><div>5<strong>. Conductivity estimates generated by Geoscience Australia's inversion </strong></div><div> -point located line data output from the inversion in ASEG-GDF2 format</div><div> -graphical (pdf) multiplot conductivity sections for each line</div><div> -georeferenced (PNG) conductivity sections (suitable for pseudo-3D display in a 2D GIS)</div><div> -GoCAD™ S-Grid 3D objects (suitable for various 3D packages)</div><div> -Curtain image conductivity sections in log & liner colour stretch (suitable 3D display in GA’s EarthSci)</div><div><br></div><div><strong>Directory structure</strong></div><div>├── <strong>01_Report</strong></div><div>├── <strong>02_XCalibur_delivered</strong></div><div>│ ├── * survey_block_Name</div><div>│ ├── cdi</div><div>│ │ ├── sections</div><div>│ │ └── stacks</div><div>│ ├── grids</div><div>│ │ ├── cnd</div><div>│ │ ├── dtm</div><div>│ │ ├── emxbf</div><div>│ │ ├── emxdb</div><div>│ │ ├── emxff</div><div>│ │ ├── emxzbf</div><div>│ │ ├── emzdb</div><div>│ │ ├── time_constant</div><div>│ │ └── tmi</div><div>│ ├── located_data</div><div>│ ├── maps</div><div>│ └── waveform</div><div>│ </div><div>├── <strong>03_Shape&kml</strong></div><div>└── <strong>04_GA_Layer_Earth_inversion</strong></div><div> ├── * survey_block_Name</div><div> ├── GA_georef_sections</div><div> │ ├── linear-stretch</div><div> │ └── log-stretch</div><div> ├── GA_Inverted_conductivity_models</div><div> ├── GA_multiplots</div><div> └── GA_sgrids</div><div> </div>