From 1 - 10 / 37
  • This collection includes calibrated time-series data and other products from Geoscience Australia's geomagnetic observatory network in Australia and Antarctica. Data dates back to 1924. <b>Value: </b>These data are used in mathematical models of the geomagnetic field, in resource exploration and exploitation, to monitor space weather, and for scientific research. The resulting information can be used for compass-based navigation, magnetic direction finding, and to help protect communities by mitigating the potential hazards generated by magnetic storms. <b>Scope: </b>Continuous geomagnetic time series data, indices of magnetic activity and associated metadata, Data dates back to 1924.

  • The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP): New South Wales (NSW) magnetotelluric survey is a collaborative project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia. Long period magnetotelluric data are being acquired at around 305 sites on a half degree grid spacing across the state of NSW. <u>Phase one</u> This record outlines the field acquisition, data QA/QC, and data processing methodologies relating to the 224 sites released in phase one. The data are released in EDI format containing impedance estimates and transfer functions for each processed site. <u>Phase two</u> A further 73 EDI format data are released as part of phase two. These data were collected and processed using the same methodology as described in the GA record released as part of phase one.

  • <p>The East Tennant Magnetotelluric (MT) Survey is funded under Geoscience Australia’s (GA) Exploring for the Future program. The survey is aimed to assist in regional stratigraphic drilling program to understand basement architecture and mineral potential in the east of Tennant Creek, Northern Territory, Australia. The survey covers an area of approximate 90 km x 100 km. Geoscience Australia contracted Zonge Engineering and Research Organisation (Australia) to undertake the survey from 22nd July to 19th Aug 2019. Broadband Magnetotelluric and Audio Magnetotelluric data were acquired at 131 stations with site spacing of ~2 km to ~15 km. <p>This data package includes MT data originally processed by the contractor and edited MT data by GA for modelling purpose. All the data were industry-standard EDI files. <p>Time series data are available on request from clientservices@ga.gov.au

  • Magnetotelluric survey data acquired in association with the L189 Gawler-Curnamona-Arrowie Deep Crustal Seismic Survey over the Curnamona Province. This survey was funded through the Onshore Energy Security Program. Data was acquired by Quantec Geoscience. Analysis and modelling was undertaken by Geoscience Australia . The aim of the survey was to produce a two-dimensional image of electrical conductivity structure of the crust and upper mantle over the Curnamona Province. This information is complementary to the reflection seismic and gravity data acquired along the 08GA-C1 traverse. Data are supplied as EDI files with support information.

  • Several narrow, linear, highly electrically conductive zones in the crust have been detected across Australia by geomagnetic deep sounding and magnetotelluric measurements made during the previous 50 years. Three major such conductivity anomalies collectively span Australia from north to south; the Carpentaria anomaly in Queensland and the Flinders and Eyre Peninsula anomalies in South Australia. They do not appear to be electrically connected at present; whether they are related in origin is a subject of further research. Recently, new magnetotelluric data have been acquired across or near to all three zones along deep seismic reflection transects which were designed to investigate crustal architecture and mineral and energy potential. Results from the seismic and MT surveys across the Carpentaria Anomaly suggest that the data are imaging a west-dipping suture forming the eastern margin of the Mount Isa province. The suture is interpreted to be the consequence of subduction and accretion prior to 1850 Ma. The Flinders Anomaly extends in an arcuate belt to the east of Lake Frome in the Curnamona Province to transect the Willyama Supergroup and the southern Flinders Ranges in a south-westerly direction, following structural trends. New magnetotelluric data acquired along two seismic transects has further refined the position and depth of the conductive zone.

  • Geoscience Australia is the custodian of the most comprehensive publicly available Australian airborne magnetic, gamma-ray, seismic, electromagnetic and gravity data sets. The airborne geophysics data set contains approximately 34 million line kilometres of data, which, at current prices, would cost approximately $197 million to acquire. The gravity data set contains more than 1.57 million reliable onshore stations gathered during more than 1800 surveys. The collection also includes a large number of seismic surveys from Australia's offshore basins. The onshore component of this data set was previously approved for RDSI for 8 TB. This proposal extends the collection to 150TB. The data types and access methods for the Offshore and Onshore data are identical Certain holdings are additionally hosted at the NCI (see downloads)

  • Magnetotelluric survey data acquired in association with the L190 Gawler-Officer-Musgrave-Amadeus Deep Crustal Seismic Survey. This survey was co-funded through AuScope, Primary Industry and Resources South Australia and Geoscience Australia's Onshore Energy Security Program. Data was acquired, processed and modelled by Geoscience Australia. The aim of the survey was to produce a two-dimensional image of electrical conductivity structure of the crust and upper mantle. This information is complementary to the reflection seismic and gravity data acquired along the 08GA-OM1 traverse. Data are supplied as EDI files with support information.

  • The footprint of a mineral system is potentially detectable at a variety of scales, from ore deposits to the Earth’s crust and lithosphere. To map these systems, Geoscience Australia has undertaken a series of integrated studies to identify key regions of mineral potential using new data from the Exploring for the Future program, together with legacy datasets. The conductivity anomaly mapped from long-period magnetotellurics (AusLAMP) data with a half-degree resolution has highlighted a structural corridor to the east of Tennant Creek, representing a potential source region for iron oxide copper–gold mineral systems. To refine the geometry of this anomaly, we used a higher-resolution magnetotellurics survey to investigate if the deep conductivity anomaly is linked to the near surface by crustal-scale fluid pathways. The 3D conductivity model revealed two prominent conductors in the resistive host, whose combined responses result in the lithospheric-scale conductivity anomaly mapped in the AusLAMP model. The resistivity contrasts coincide with major structures preliminarily interpreted from seismic reflection and potential field data. Most importantly, the conductive structures extend from the lower crust to the near surface. This observation strongly suggests that the major faults in this region are deep-penetrating structures that potentially acted as pathways for transporting metalliferous fluids to the upper crust where they could form mineral deposits. This result indicates high mineral prospectivity for iron oxide copper–gold deposits in the vicinity of these major faults. This study demonstrates that integration of geophysical data from multiscale surveys is an effective approach to scale reduction during mineral exploration in covered terranes with limited geological knowledge. <b>Citation:</b> Jiang, W., Duan, J., Schofield, A. and Clark, A., 2020. Mapping crustal structures through scale reduction magnetotelluric survey in the East Tennant region, northern Australia. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • Geoscience Australia (GA), in partnership with State (SA, NSW, VIC, QLD, WA and TAS) and Northern Territory Geological Surveys, has applied the magnetotelluric (MT) technique to image the resistivity structure of the Australian continent over the last decade. Data have been acquired at nearly 5000 stations across Australia through a national MT survey program and regional MT surveys. Most of the data are available at GA’s website. These data provided valuable information for multi-disciplinary interpretations that incorporate various datasets. This release package includes ArcGIS shape files and Excel files of MT station locations for the completed AusLAMP and regional surveys up to December 2017.

  • As part of the Australian Government's Onshore Energy Security Program (2006-2011) Geoscience Australia in collaboration with Geological Survey of Western Australia acquired magnetotelluric (MT) data along the deep crustal seismic reflection transect across the Yilgarn Craton, Officer Basin and Musgrave Province in Central Western Australia. The aim of the MT survey is to map the electrical resistivity distribution and improve scientific understanding of the crustal and upper mantle structure in this region. This information is complementary to that obtained from deep crustal seismic reflection, seismic refraction, potential field and geological data, which together provide new knowledge of the crustal architecture and geodynamics of the region. It is important for helping to determine the potential for both mineral and energy resources. Data are supplied as EDI files with support information.