Electrical and electromagnetic methods in geophysics
Type of resources
Keywords
Publication year
Topics
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div>As part of Exploring for the Future (EFTF) program with contributions from the Geological Survey of Queensland, long-period magnetotelluric (MT) data for the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) were collected using Geoscience Australia's LEMI-424 instruments on a half-degree grid across northern and western Queensland from April 2021 to November 2022. This survey aims to map the electrical resistivity structures in the region. The processed data and 3D resistivity model have been released (https://dx.doi.org/10.26186/148633). </div><div><br></div><div>This data release contains site locations and acquired time series data at each site in two formats:</div><div>1. MTH5, a hierarchical data format. The open-source MTH5 Python package (https://github.com/kujaku11/mth5) was used to convert the recorded LEMI data into MTH5 format.</div><div>2. Text file (*.TXT). This is the original format recorded by the LEMI-424 data logger.</div><div><br></div><div>We acknowledge the traditional landowners, private landholders and national park authorities within the survey region, without whose cooperation these data could not have been collected.</div><div><br></div><div><strong>Data is available on request from clientservices@ga.gov.au - Quote eCat# 148978</strong></div><div><br></div>
-
<div>This data package contains interpretations of airborne electromagnetic (AEM) conductivity sections in the Exploring for the Future (EFTF) program’s Eastern Resources Corridor (ERC) study area, in south eastern Australia. Conductivity sections from 3 AEM surveys were interpreted to provide a continuous interpretation across the study area – the EFTF AusAEM ERC (Ley-Cooper, 2021), the Frome Embayment TEMPEST (Costelloe et al., 2012) and the MinEx CRC Mundi (Brodie, 2021) AEM surveys. Selected lines from the Frome Embayment TEMPEST and MinEx CRC Mundi surveys were chosen for interpretation to align with the 20 km line-spaced EFTF AusAEM ERC survey (Figure 1).</div><div>The aim of this study was to interpret the AEM conductivity sections to develop a regional understanding of the near-surface stratigraphy and structural architecture. To ensure that the interpretations took into account the local geological features, the AEM conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This approach provides a near-surface fundamental regional geological framework to support more detailed investigations. </div><div>This study interpreted between the ground surface and 500 m depth along almost 30,000 line kilometres of nominally 20 km line-spaced AEM conductivity sections, across an area of approximately 550,000 km2. These interpretations delineate the geo-electrical features that correspond to major chronostratigraphic boundaries, and capture detailed stratigraphic information associated with these boundaries. These interpretations produced approximately 170,000 depth estimate points or approximately 9,100 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div>Results from these interpretations provided support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The interpretations have applications in a wide range of disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. It is anticipated that these interpretations will benefit government, industry and academia with interest in the geology of the ERC region.</div>
-
<div>The Geoscience Australia magnetotellurics (MT) program collaborates with state and territory geological surveys, universities, and AuScope to acquire audio- (AMT), broadband- (BBMT), and long-period-MT (LPMT) data to help understand the electrical conductivity structure of the Australian continent.</div><div><br></div><div>This report collates the time-series and processed data, electrical conductivity models, and publications released for projects for which Geoscience Australia was the lead organisation, a collaborator, or an in-kind or financial supporter. For the most part, this report does not reference MT data, models or publications released by other parties for projects in which Geoscience Australia had no involvement. Please see Geoscience Australia’s AusLAMP, Exploring for the Future AusLAMP, and Regional Magnetotellurics webpages for more information.</div>
-
<div>The Magnetotelluric (MT) Sites database contains the location of sites where magnetotelluric (MT) data have been acquired by surveys. These surveys have been undertaken by Geoscience Australia and its predecessor organisations and collaborative partners including, but not limited to, the Geological Survey of New South Wales, the Northern Territory Geological Survey, the Geological Survey of Queensland, the Geological Survey of South Australia, Mineral Resources Tasmania, the Geological Survey of Victoria and the Geological Survey of Western Australia and their parent government departments, AuScope, the University of Adelaide, Curtin University and University of Tasmania. Database development was completed as part of Exploring for the Future (EFTF) and the database will utilised for ongoing storage of site information from future MT acquisition projects beyond EFTF. Location, elevation, data acquisition date and instrument information are provided with each site. The MT Sites database is a subset of tables within the larger Geophysical Surveys and Datasets Database. </div><div><br></div><div>The resource is accessible via the Geoscience Australia Portal (https://portal.ga.gov.au/), use Magnetotelluric as your search term to find the relevant data.</div>
-
<div> A key issue for explorers in Australia is the abundant sedimentary and regolith cover obscuring access to underlying potentially prospective rocks. Multilayered chronostratigraphic interpretation of regional broad line-spaced (~20 km) airborne electromagnetic (AEM) conductivity sections have led to breakthroughs in Australia’s near-surface geoscience. A dedicated/systematic workflow has been developed to characterise the thickness of cover and the depth to basement rocks, by delineating contact geometries, and by capturing stratigraphic units, their ages and relationships. Results provide a fundamental geological framework, currently covering 27% of the Australian continent, or approximately 2,085,000 km2. Delivery as precompetitive data in various non-proprietary formats and on various platforms ensures that these interpretations represent an enduring and meaningful contribution to academia, government and industry. The outputs support resource exploration, hazard mapping, environmental management, and uncertainty attribution. This work encourages exploration investment, can reduce exploration risks and costs, helps expand search area whilst aiding target identification, and allows users to make well-informed decisions. Presented herein are some key findings from interpretations in potentially prospective, yet in some cases, underexplored regions from around Australia. </div> This abstract was submitted & presented to the 8th International Airborne Electromagnetics Workshop (AEM2023) (https://www.aseg.org.au/news/aem-2023)
-
The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) is a collaborative national survey that acquires long-period magnetotelluric (MT) data on a half-degree grid spacing across Australia. This national scale survey aims to map the electrical conductivity/resistivity structure in the crust and mantle beneath the Australian continent, which provides significant additional information about Australia’s geodynamic framework as well as valuable pre-competitive data for resource exploration. Geoscience Australia in collaboration with the Geological Survey of New South Wales (GSNSW) has completed AusLAMP data acquisition at 321 sites across the state of NSW. The data were acquired using LEMI-424 instruments and were processed using the Lemigraph software. The processed data in EDI format and report of field acquisition, data QA/QC, and data processing have been released in 2020 (https://pid.geoscience.gov.au/dataset/ga/132148). This data release contains acquired time series data at each site in two formats: 1. MTH5, a hierarchical data format. The open-source MTH5 Python package (https://github.com/kujaku11/mth5) was used to convert the recorded LEMI data into MTH5 format. 2. Text file (*.TXT). This is the original format recorded by the LEMI-424 data logger. We acknowledge the traditional landowners, private landholders and national park authorities within the survey region, without whose cooperation these data could not have been collected. <b>Data is available on request from clientservices@ga.gov.au - Quote eCat# 148544</b>
-
<div><strong>Output Type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>The Australian Lithospheric Architecture Magnetotelluric project (AusLAMP) is a collaborative, national survey that aims to acquire long period magnetotelluric (MT) data at 0.5° spacing (~55 km) across the Australian continent. AusLAMP started in 2013 and is ~51% complete to date. Over the last decade, regional-scale conductivity/resistivity AusLAMP models have been produced following data acquisition campaigns, but a levelled national model has not emerged. Here we present the largest AusLAMP conductivity model incorporating 85% of data acquired to date. The model images the conductivity structure of the Australian lithosphere across most parts of central and eastern Australia, including Tasmania. The resolved resistivity structures broadly conform with identified major geological domains and crustal boundaries but also reveal significant variations within geological provinces, orogens and cratons. There are strong spatial associations between crustal/mantle conductors and copper and gold deposits and carbonatites, which provide further evidence that major lithospheric conductors control the distributions of a range of mineral systems. This new model is a powerful bottom-up approach to inform exploration, particularly in covered and under-explored regions.</div><div><br></div><div><strong>Citation: </strong>Duan J. & Huston D., 2024. AusLAMP - mapping lithospheric architecture and reducing exploration search space in central and eastern Australia. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts. Geoscience Australia, Canberra. https://doi.org/10.26186/149675</div>
-
<div> Airborne electromagnetic (AEM) data has been acquired at 20km line spacing across much of the Australian continent and conductivity models generated by inverting these data are freely available. Despite the wide line spacing these data are suitable for imaging the near surface and better understanding groundwater systems. Twenty-kilometre spaced AEM data acquired over the Cooper Creek floodplain using a fixed-wing towed system were inverted using deterministic and probabilistic methods. The Cooper Creek is an anabranching ephemeral river system in arid eastern central Australia. We integrated conductivity data with a range of surface and subsurface data to characterise the hydrogeology of the region and infer groundwater salinity from the shallow alluvial aquifer across a more than 14,000 km2 Cooper Creek floodplain. The conductivity data also revealed several examples of focused recharge through a river channel forming a freshwater lens within the more regional shallow saline groundwater system.</div><div> </div><div>This work demonstrates that regional AEM conductivity data can be a valuable tool for understanding groundwater processes at various scales with implications for how to responsibly manage water resources. This work is especially important in the Australian context where high quality borehole data is typically sparse, but high-quality geophysical and satellite data are often accessible.</div><div> </div> This presentation was given to the 8th International Airborne Electromagnetics Workshop (AEM2023) (https://www.aseg.org.au/news/aem-2023)
-
<div><strong>Yathong, Forbes, Dubbo, and Coonabarabran Airborne Electromagnetic Survey Blocks.</strong></div><div><br></div><div>Geoscience Australia (GA), in collaboration with the Geological Survey of New South Wales (GNSW), conducted an airborne electromagnetic (AEM) survey from April to June 2023. The survey spanned from the north-eastern end of the Yathong-Ivanhoe Trough and extended across the Forbes, Dubbo, and Coonabarabran regions of New South Wales. A total of 15, 090-line kilometres of new AEM and magnetic geophysical data were acquired. This survey was entirely funded by GSNSW and GA managed acquisition, quality control, processing, modelling, and inversion of the AEM data.</div><div><br></div><div>The survey was flown by Xcalibur Aviation (Australia) Pty Ltd using a 6.25 Hz HELITEM® AEM system. The survey blocks were flown at 2500-metre nominal line spacings, with variations down to 100 metres in the Coonabarabran block. It was flown following East-West line directions. Xcalibur also processed the acquired data. This data package includes the acquisition and processing report, the final processed AEM data, and the results of the contractor's conductivity-depth estimates. The data package also contains the results and derived products from a 1D inversion by Geoscience Australia with its own inversion software.</div><div><br></div><div>The survey will be incorporated and become part of the national AusAEM airborne electromagnetic acquisition program, which aims to provide geophysical information to support investigations of the regional geology and groundwater.</div><div><br></div><div><strong>The data release package contains:</strong></div><div><br></div><div>1. A data release package <strong>summary PDF document</strong></div><div>2. The <strong>survey logistics and processing report</strong> and HELITEM® system specification files</div><div>3. <strong>Final processed point located line data</strong> in ASEG-GDF2 format for the five areas</div><div> -final processed dB/dt electromagnetic, magnetic and elevation data</div><div> -final processed B field electromagnetic, magnetic and elevation data</div><div><strong> <em>Conductivity estimates generated by Xcalibur’s inversion </em></strong></div><div> -point located conductivity-depth line data output from the inversion in ASEG-GDF2 format</div><div> -graphical (PDF) multiplot conductivity stacks and section profiles for each flight line</div><div> -graphical (PNG) conductivity sections for each line</div><div> -grids generated from the Xcalibur’s inversion in ER Mapper® format (layer conductivities slices, DTM, X & Z component for each of the 25 channels, time constants, TMI)</div><div>4.<strong> ESRI shape and KML</strong> (Google Earth) files for the flight lines and boundary</div><div>5<strong>. Conductivity estimates generated by Geoscience Australia's inversion </strong></div><div> -point located line data output from the inversion in ASEG-GDF2 format</div><div> -graphical (pdf) multiplot conductivity sections for each line</div><div> -georeferenced (PNG) conductivity sections (suitable for pseudo-3D display in a 2D GIS)</div><div> -GoCAD™ S-Grid 3D objects (suitable for various 3D packages)</div><div> -Curtain image conductivity sections in log & liner colour stretch (suitable 3D display in GA’s EarthSci)</div><div><br></div><div><strong>Directory structure</strong></div><div>├── <strong>01_Report</strong></div><div>├── <strong>02_XCalibur_delivered</strong></div><div>│ ├── * survey_block_Name</div><div>│ ├── cdi</div><div>│ │ ├── sections</div><div>│ │ └── stacks</div><div>│ ├── grids</div><div>│ │ ├── cnd</div><div>│ │ ├── dtm</div><div>│ │ ├── emxbf</div><div>│ │ ├── emxdb</div><div>│ │ ├── emxff</div><div>│ │ ├── emxzbf</div><div>│ │ ├── emzdb</div><div>│ │ ├── time_constant</div><div>│ │ └── tmi</div><div>│ ├── located_data</div><div>│ ├── maps</div><div>│ └── waveform</div><div>│ </div><div>├── <strong>03_Shape&kml</strong></div><div>└── <strong>04_GA_Layer_Earth_inversion</strong></div><div> ├── * survey_block_Name</div><div> ├── GA_georef_sections</div><div> │ ├── linear-stretch</div><div> │ └── log-stretch</div><div> ├── GA_Inverted_conductivity_models</div><div> ├── GA_multiplots</div><div> └── GA_sgrids</div><div> </div> <b>Final Processed point located line data is available on request from clientservices@ga.gov.au - Quote eCat# 149118</b>
-
<div>This package contains Airborne Electromagnetic (AEM) data from the regional survey flown over the Upper Darling Floodplain in New South Wales (NSW), Australia between March-July 2022. Approximately 25,000 line km of transient EM and magnetic data were acquired. Geoscience Australia (GA) commissioned the survey in collaboration with the New South Wales Department of Planning and Environment (NSW DPE) as part of the Australian Government’s Exploring for the Future (EFTF) program (https://www.ga.gov.au/eftf). The NSW DPE were funding contributors to the AEM data collection. GA managed all aspects of the acquisition, quality control and processing of the AEM data.</div>