From 1 - 10 / 48
  • <div>Aboriginal and Torres Strait Islander peoples hold a wealth of traditional knowledge about their land and waters gathered and passed down from observations over thousands of years. Geoscience Australia (GA) is the national geoscience public sector organisation that advises on the geology, hydrogeology, and geography of Australia by applying science and technology to describe and understand the Earth. Respectful and successful two-way engagement with Indigenous peoples provides an opportunity to identify and share traditional understanding, complementing geoscientific studies and preserving traditional knowledge Through its Innovate Reconciliation Action Plan, GA is committed to building mutually beneficial relationships with Aboriginal and Torres Strait Islander peoples. Aligned with this vision, and as part of the Exploring for the Future Program, GA engaged a subject matter expert to undertake a scoping study. The aim of this study was to provide advice to strengthen the internal processes it uses to engage and undertake projects with Indigenous peoples. Drawing on two case studies (northeast NSW; eastern WA), a framework was developed to guide GA staff in the collection and recording of information and knowledge in a culturally appropriate manner. The project also delivered a road map to achieve better engagement and inclusion of Indigenous peoples in geoscience studies, to be tested and refined in future work programs. The road map is built on six key elements: (1) increasing Indigenous employment; (2) building partnerships; (3) respecting timeframes; (4) embedding Indigenous values and culture; (5) adhering to ethical practices and principles; and (6) embracing two-way knowledge sharing. Trust is crucial to building a partnership with Indigenous communities, binding the six elements of the road map. In the future GA hopes to share the outcomes with other organisations, from applying the framework and road map aimed at improving engagement with Indigenous peoples in groundwater activities and the geosciences more broadly. Presented at the 2022 Australasian Groundwater Conference (AGC)

  • <div>This document describes a series of experiments that grow student understanding of the concepts on porosity and permeability as it relates to groundwater. Sediments are used to substitute for sedimentary rocks and water movement through different types of sediment is evaluated. The document is split into two sections, background information for teachers and a 3 part experiment with activity sheet for students. The activities are suitable for use with secondary to senior secondary science and geography students.</div>

  • <div>The Australian Government's Trusted Environmental and Geological Information program is a collaboration between Geoscience Australia and CSIRO. Part of this program includes baseline geological and environmental assessments. </div><div> Hydrogeological information has been collated for the Adavale, Cooper, Galilee and north Bowen basins and overlying basins, including the Eromanga and Lake Eyre basins. This information will provide a regionally-consistent baseline dataset that will be used to develop groundwater conceptualisation models.</div><div> Publicly-available data within these basin regions have been compiled from over 30&nbsp;000 boreholes, 120 stream gauges, and 1100 rainfall stations, resulting in revised hydrostratigraphic frameworks. From the published literature, 14 major hydrostratigraphic units are recognised within the basin regions. For each of these major hydrostratigraphic units, we determined the salinity, Darcian yield, specific yield/storativity, groundwater reserve volume for unallocated groundwater, groundwater levels/hydrological pressure, likelihood of inter-aquifer connectivity, rainfall, connectivity between surface water and groundwater, and water-use volume statistics, where relevant, for each basin, hydrogeological province and aquifer. We then adopted a play-based approach to develop holistic hydrostratigraphic conceptualisations of the basin regions. </div><div> Within the Adavale Basin we have defined a new hydrogeological province including two new aquifers defined as the moderate salinity and moderately overpressured Buckabie-Etonvale Aquifer, and the hypersaline and hyper-overpressured Lissoy-Log Creek-Eastwood Aquifer. Similarities between the upper Buckabie-Etonvale Aquifer of the Adavale Basin and lowermost Joe Joe Group of the Galilee Basin suggests connectivity between the upper Adavale and lower Galilee basins. Hydraulic pressures (up to 1500 m of excess freshwater head) calculated for the Lissoy–Log Creek–Eastwood Aquifer indicate that if the aquifer was to be breached, there is potential localised risk to overlying aquifers and surface environments, including infrastructure.</div><div><br></div><div><strong>Author Biography:</strong></div><div>Dr. Chris Gouramanis is a hydrogeologist working in the Trusted Environmental and Geological Information program, in the Minerals, Energy and Groundwater Division of Geoscience Australia. Chris was awarded his PhD from The Australian National University in 2009 and has held several water and environmental policy positions within the Australian Government. He worked for 10 years as an academic at the Earth Observatory of Singapore and the Geography Department at the National University of Singapore. He is also Australia’s National Focal Point to the Scientific and Technical Review Panel of the Ramsar Convention on Wetlands.</div><div><br></div>This Abstract was submitted/presented to the 2022 Australasian Groundwater Conference 21-23 November (https://agc2022.com.au/)

  • Groundwater is critical to Australia’s future economic development and is the only reliable water source for many regional and rural communities. It also sustains environmental and cultural assets including springs and groundwater-dependent ecosystems. The demand for groundwater in Australia is expected to increase with population growth, economic development and climate change. Geoscience Australia, in partnership with Commonwealth, State and Territory governments is delivering national and regional groundwater investigations through the Exploring for the Future (EFTF) Program to support water management decisions. Geoscience Australia’s groundwater studies apply innovative geoscience tools and robust geoscientific workflows to increase knowledge and understanding of groundwater systems and assessment of groundwater resource potential for economies, communities and the environment. Through integrating geological and hydrogeological data, airborne electromagnetic and ground-based geophysical, hydrogeochemical and remote sensing data, we have developed new geological and hydrogeological conceptual models and identified potential managed aquifer recharge sites in a number of areas across Northern Australia. The EFTF program is focussed on improving our understanding of Australia's groundwater through a National Groundwater Systems project as well as two regional-scale groundwater investigations in Southern Australia. We are commencing an inventory of Australia’s groundwater systems in onshore basins that includes a compilation and broad interpretation of hydrogeological information. This is the basis for the collation and curation of nationally seamless groundwater information to support informed decision making and water resource coordination across jurisdictions. All data and value-added products are freely available for public use via the Exploring for the Future Data Discovery portal (https://portal.ga.gov.au/). This Abstract was submitted to the 2022 Australasian Groundwater Conference 21-23 November (https://agc2022.com.au/)

  • <div>Groundwater is a finite and largely hidden resource. Enhancing scientific understanding of groundwater systems improves decisions about its planning, allocation and use. This benefits all Australians through improved water management.</div><div>Australia’s groundwater resources underpin billions of dollars of economic activity, provide safe and reliable drinking water for millions of people, and sustain life and cultural values across the country. Sustainably managing our critical groundwater resources is vital to improving water security and protecting the environment.</div><div>Geoscience Australia and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) collaborate on initiatives funded by the Australian Government. We work together to deliver innovative solutions to nationally significant issues affecting Australia’s groundwater resources.</div><div>With world‑class expertise and facilities, we are at the forefront of groundwater science. Our combined hydrogeological capabilities are best applied to regional and national-scale challenges that extend beyond the remit of individual jurisdictions or private industry.</div><div>This publication highlights the scientific approaches, technologies, and methods that we apply to better understand and characterise Australia’s groundwater and includes case studies that demonstrate the unique value of our collaboration.</div><div><br></div>

  • <div>This report details results and methodology from two hydrochemistry sampling programs performed as part of Geoscience Australia’s Musgrave Palaeovalley Project. The Musgrave Palaeovalley Project is a data acquisition and scientific investigation program based around the central west of Australia. It is aimed at investigating groundwater processes and resources within the Cenozoic fill and palaeovalleys of the region. This project, and many others, have been performed as part of the Exploring for the Future (EFTF) program, an eight-year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program.</div><div>Data released here is from 18 bores sampled for groundwater and tested for a range of analytes including field parameters, major and minor elements, isotopes and trace gases. The sampling methods, quality assurance/quality control procedures, analytical methods and results are included in this report.</div>

  • <div>Cooper Creek is a dryland river system that extends from the western Great Dividing Range in Central Queensland to Lake Eyre in South Australia. The middle course of the Cooper Creek is characterised by anabranching river channels across a wide floodplain that flow intermittently due to monsoonal flooding event higher in the catchment. As floodwaters recede, freshwater stagnates within numerous deeper segments of river channels forming ‘waterholes’ which support ecosystems with significant ecological and cultural value. However, there is little evidence that shallow groundwater discharges into these surface water bodies and the link between surface water and groundwater is not well understood. This study aims to demonstrate how airborne electromagnetics (AEM) and other geoscientific data can be integrated to identify recharge within shallow saline groundwater systems, which are so common in arid inland Australia.</div><div> The regional water table underneath the floodplain is shallow (<10m) and highly saline (>38,000 TDS), with a chemical signature suggesting salts were concentrated by evapotranspiration. Surface swelling clays likely limits the amount of recharge that occurs through the floodplain itself. However, a detailed study by Cendón et al (2010) found that during high flow events, floodwater scoured the base of the waterholes allowing freshwater to recharges into the shallow groundwater system forming chemically distinct freshwater lenses.</div><div> AEM is a geophysical technique capable of estimating bulk conductivity for the top few hundred metres of the subsurface. Part of the AusAEM Eastern Resource Corridor survey (Ley-Cooper 2021) crossed the Cooper Creek floodplain with a 20km line spacing. The bulk conductivity models delivered as part of this survey resolved the top of the saline water table regionally. In several locations, we identified resistive lenses sitting on the shallow water table which coincide with river channels that are frequently inundated.</div><div><br></div><div>Cendón, D.I., Larsen, J.R., Jones, B.G., Nanson, G.C., Rickleman, D., Hankin, S.I., Pueyo, J.J. and Maroulis, J., 2010. Freshwater recharge into a shallow saline groundwater system, Cooper Creek floodplain, Queensland, Australia.&nbsp;<em>Journal of Hydrology</em>,&nbsp;<em>392</em>(3-4), pp.150-163.</div><div>LeyCooper, Y. 2021. Exploring for the Future AusAEM Eastern Resources Corridor: 2021 Airborne Electromagnetic Survey TEMPEST® airborne electromagnetic data and GALEI inversion conductivity estimates. Geoscience Australia, Canberra.</div> This Abstract was submitted/presented to the 2022 Australasian Groundwater Conference 21-23 November (https://www.aig.org.au/events/australasian-groundwater-conference-2022/)

  • <div>As part of the Exploring for the Future (EFTF) programme, the groundwater team undertook an in-depth investigation into characterising surface water -- groundwater interaction in the Cooper Creek floodplain using airborne electromagnetics (AEM). This work is to be released as part of the Lake Eyre Basin detailed inventory and as an EFTF extended abstract. As part of Geoscience Australia's commitment to transparent science, the scientific workflows that underpinned a large component of this investigation are to be released as a jupyter notebook. This notebook contains python code, figures and explanatory text that the reader can use to understand how the AEM data were processed, visualised, integrated with other data and interpreted.</div>

  • <div>Reliable water availability is critical to supporting communities and industries such as mining, agriculture and tourism. In remote and arid areas such as in the Officer – Musgrave region of central Australia, groundwater is the only viable source of water for human and environmental use. Groundwater systems in remote regions such as the Musgrave Province are poorly understood due to sparse geoscientific data and few detailed scientific investigations. The Musgrave palaeovalley module will improve palaeovalley groundwater system understanding in the Musgrave Province and adjacent basins to identify potential water sources for communities in the region. This report summarises the state of knowledge for the region on the landscape, population, water use, geology and groundwater systems. An analysis of the current and potential future water needs under different development scenarios captures information on how water is used in an area covering three jurisdictions and several potentially competing land uses.</div><div>The Musgrave Palaeovalley study area is generally flat, low-lying desert country. The Musgrave, Petermann, Mann and Warburton ranges in the centre of the area are a significant change in elevation and surface materials, comprising rocky hills, slopes and mountains with up to 800&nbsp;m of relief above the sand plains. Vegetation is generally bare or sparse, with isolated pockets of grassy or woody shrub lands. Soils are typically Tenosols, Rudosols and Kandosols.</div><div><br></div><div>There are four main hydrogeological systems in the study area. These are the fractured and basement rocks, local Quaternary sediments regional sedimentary basins and palaeovalley aquifers. These systems are likely to be hydraulically connected. Within palaeovalleys, three main hydrostratigraphic units occur. The upper Garford Formation is a sandy unconfined aquifer with a clay rich base (lower Garford Formation) which acts as a partial aquitard where present. The Pidinga Formation represents a coarser sandy or gravelly channel base, which is partly confined by the lower Garford Formation aquitard. The aquifers are likely to be hydraulically connected on a regional scale. Further to the west, equivalent units are identified and named in palaeovalley systems on the Yilgarn Craton. </div><div><br></div><div>Groundwater is recharged by episodic, high-intensity rainfall events and mostly discharges via evapotranspiration. Recharge is higher around the ranges, and lower over the flatter sand plains. Palaeovalley aquifers likely receive some groundwater inflow from underlying basin systems and fractured rock systems. Regional groundwater movement is topographically controlled, moving from the ranges towards surrounding areas of lower elevation. In some palaeovalleys groundwater discharges at playa lakes. Water table gradients are very low. More groundwater isotope and tracer data is required to understand potential connectivity between basin, fractured rock and palaeovalley systems.</div><div>Groundwater quality is brackish to saline, although pockets of fresher groundwater occur close to recharge areas and within the deeper and coarse-grained Garford Formation. Groundwater resources generally require treatment prior to use Most groundwater in the region is suitable for stock use. </div><div><br></div><div>Existing palaeovalley mapping is restricted to inferring extents based on landscape position and mapped surface materials. Utilising higher resolution digital elevation models and more recently acquired remotely sensed data will refine mapped palaeovalley extents. Improving the modelling of the distribution and depth of palaeovalleys in greater detail across the region is best aided through interpretation of airborne electromagnetic (AEM) data.</div><div>Based on the successes of integrating AEM with other geoscientific data in South Australia, we have acquired 25,109 line km of new AEM across the WA and NT parts of our study area. We will integrate this data with reprocessed and inverted publicly available AEM data, existing borehole information, existing and newly acquired hydrochemical data, and new surface magnetic resonance data to model the three dimensional distribution of palaeovalleys in the study area. We will use these models and data as the basis for conceptualising the hydrogeology of the palaeovalley systems, and provide information back to local communities and decision-makers to inform water management decisions. The data will also provide valuable precompetitive information for future economic development in the region.</div><div><br></div>

  • <div>Australia is the driest inhabited continent on Earth and groundwater is crucial to maintaining the country’s population, economic activities, Indigenous culture and environmental values. Geoscience Australia is renewing a national-scale focus to tackle hydrogeological challenges by building upon our historic legacy in groundwater studies at regional and national scales.</div><div><br></div><div>The most comprehensive hydrogeological coverage of the nation is the 1987 Hydrogeology of Australia map, developed by a predecessor of Geoscience Australia. This map provides an overview of groundwater systems and principal aquifers across Australia, based upon the large sedimentary basins, intervening fractured rock areas and smaller overlying sedimentary/volcanic aquifers. However, the currency and completeness of the information presented and accompanying the national hydrogeology map needs to be improved. Updating the extents, data and scientific understanding of the hydrogeological regions across Australia, and improving the accessibility and useability of this information will address many of its current limitations.</div><div><br></div><div>Geoscience Australia, within its Exploring for the Future program, is compiling hydrogeological and related contextual information clearly and consistently across Australia’s major sedimentary basins and intervening fractured rock provinces. This information has been collected for 41 major hydrogeological regions spanning the continent: 36 sedimentary basins and 5 regions dominated by fractured-rock aquifers. The information, collected through a combination of geospatial analyses of national datasets and high-level summaries of scientific literature, will be presented through Geoscience Australia’s online data discovery portal, thereby enabling improved interrogation and integration with other web mapping services.</div><div><br></div><div>The new compilation of nationally consistent groundwater data and information will help to prioritise future investment for new groundwater research in specific regions or basins, inform the work programs of Geoscience Australia and influence the prioritisation of national hydrogeological research more broadly.&nbsp;</div><div><br></div>This Abstract was submitted/presented to the 2022 Australasian Groundwater Conference 21-23 November (https://agc2022.com.au/)