From 1 - 10 / 26
  • Although there is general agreement that the western two-thirds of Australia was assembled from disparate blocks during the Proterozoic, the details of this assembly are difficult to resolve, mainly due to ambiguous and often conflicting data sets. Many types of ore deposits form and are preserved in specific geodynamic environments. For example, porphyry-epithermal, volcanic-hosted massive sulfide (VHMS), and lode gold deposits are mostly associated with convergent margins. The spatial and temporal distributions of these and other deposits in Proterozoic Australia may provide another additional constraints on the geodynamic assembly of Proterozoic Australia. For example, the distribution of 1805-1765 Ma lode gold and VHMS deposits in the North Australian Element, one of the major building block of Proterozoic Australia, supports previous interpretations of a convergent margin to the south, and is consistent with the distribution of granites with subduction-like signatures. These results imply significant separation between the North and South Australian elements before and during this period. Similarly, the distribution of deposits in the Halls Creek Orogen is compatible with convergence between the Kimberly and Tanami provinces at 1865-1840 Ma, and the characteristics of the deposits in the Mount Isa and Georgetown provinces are most compatible with extension at 1700-1650 Ma, either in a back-arc basin or as a consequence of the break-up of Nuna.

  • The magma-poor southern Australian rifted margin formed as a result of a long history of lithospheric extension that commenced in the Middle Jurassic. Breakup with Antarctica was diachronous, commencing in the west at ~83 Ma and concluding in the east at ~34 Ma. Initial NW-SE ultra-slow to slow seafloor spreading (83-45 Ma), followed by N-S fast spreading (45 Ma-present), resulted in a broad threefold segmentation of the margin: a long E-W oriented divergent margin segment (Bight-western Otway basins); a NW-SE trending transitional segment (central Otway-Sorell basins); and a N-S oriented transform margin (southern Sorell-South Tasman Rise). Segmentation appears to have been strongly controlled by the pre-existing basement structure. The divergent and western transitional margin segments are characterised by a broad region of lithospheric thinning and thick extensional basin development. In this region, a well-developed ocean-continent transition zone includes basement highs interpreted as exhumed sub-continental lithospheric mantle. Mapping of stratigraphic sequences provides insights into the processes that took place at the evolving margin, including the timing of mantle exhumation, and the diachronous nature of crustal thinning and breakup. The orientation and segmentation of the western and transitional margin segments suggests that initial spreading is likely to have been accommodated by short, extension-parallel transform segments. In the easternmost part of transitional zone, lithospheric thinning is not as marked and the continent-ocean boundary is interpreted to comprise both rift and long transform elements. Here, roughly N-S oriented extension resulted in the development of strongly transtensional basins.

  • New SHRIMP U/Pb zircon ages of 472.2 ± 5.8 Ma and 470.4 ± 6.1 Ma are presented for the age of peak metamorphism of Barrovian migmatite units. Magmatic advection is thought to have provided significant heat for the Barrovian metamorphism. Published U/Pb emplacement ages for Grampian-age igneous units of Scotland and Ireland define a minimum age range of c. 473.5 to c. 470 Ma for Barrovian metamorphic heating. The new U/Pb ages are consistent with attainment of peak Barrovian metamorphic temperatures during Grampian magmatism. U/Pb-calibrated 40Ar/39Ar ages for white mica from the Barrovian metamorphic series vary systematically with increasing metamorphic grade, between c. 465 Ma for the biotite zone and c. 461 Ma for the sillimanite zone. Microstructural work on the timing of metamorphism in the Barrovian metamorphic series has shown that peak metamorphism occurred progressively later with increasing peak-metamorphic grade. Younging metamorphic age with increasing metamorphic grade across the Barrovian metamorphic series requires that the sequence was cooled in the lower-grade regions while thermal activity continued in the high-grade regions. This thermal scenario is well explained by the presence of a large-scale extensional detachment that actively cooled units from above while the Barrovian metamorphic heating continued at greater depth in the footwall. The spatio-temporal thermal pattern recorded by the Barrovian metamorphic series is consistent with regional metamorphism during crustal extension.

  • Faults of the Lapstone Structural Complex (LSC) underlie 100 km, and perhaps as much as 160 km, of the eastern range front of the Blue Mountains, west of Sydney, Australia. More than a dozen major faults and monoclinal flexures have been mapped along its extent. Debate continues as to the age of formation of the ~400 m or more of relief relating to the LSC, with estimates ranging from Palaeozoic to Pliocene. The results of an investigation of Mountain Lagoon, a small basin bound on its eastern side by the Kurrajong Fault in the central part of the LSC, favour a predominantly pre-Neogene origin. Drilling on the eastern margin of the lagoon identified 15 m of fluvial, colluvial and lacustrine sediments, overlying shale bedrock. The sediments are trapped behind a sandstone barrier corresponding to the Kurrajong Fault. Dating of pollen grains preserved in sediments at the base of this sediment column suggest that the fault-angle depression began trapping sediment in the Early to Middle Miocene. Strongly heated Permo-Triassic gymnosperm pollen in the same strata provides circumstantial evidence that sediment accumulation post-dates the ca. 18.8 Ma emplacement of the nearby Green Scrub basalt. Our data indicate that only 15 m of the 130 m of throw across the Kurrajong Fault has occurred during the Neogene suggesting a predominantly erosional exhumation origin for current relief at the eastern edge of the Blue Mountains plateau. Sedimentation since the Late Pleistocene appears to have been controlled largely by climatic processes, with tectonism exerting little or no influence.

  • Speculation is increasing that Proterozoic eastern Australia and western Laurentia represent conjugate rift margins formed during breakup of the NUNA supercontinent and thus share a common history of rift-related basin formation and magmatism. In Australia, this history is preserved within three stacked superbasins formed over 200 Myr in the Mount Isa region (1800-1750 Ma Leichhardt, 1730-1670 Ma Calvert and 1670-1575 Ma Isa), elements of which extend as far east as Georgetown. The Mount Isa basins developed on crystalline basement of comparable (~1840 Ma) age to that underlying the Paleoproterozoic Wernecke Supergroup and Hornby Bay Basin in NW Canada which share a similar tripartite sequence stratigraphy. Sedimentation in both regions was accompanied by magmatism at 1710 Ma, further supporting the notion of a common history. Basin formation in NW Canada and Mount Isa both concluded with contractional orogenesis at ~1600 Ma. Basins along the eastern edge of Proterozoic Australia are characterised by a major influx of sediment derived from juvenile volcanic rocks at ~1655 Ma and a significant Archean input, as indicated by Nd isotopic and detrital zircon data. A source for both these modes is currently not known in Australia although similar detrital zircon populations are documented in the Hornby Bay Basin, and in the Wernecke Supergroup, and juvenile 1660-1620 Ma volcanism occurs within Hornby Bay basin NW Canada. These new data are most consistent with a northern SWEAT-like tectonic reconstruction in a NUNA assembly thus giving an important constraint on continental reconstructions that predate Rodinia.

  • Paleoproterozoic-earliest Mesoproterozoic sequences in the Mount Isa region of northern Australia preserve a 200 Myr record (1800-1600 Ma) of intracontinental rifting, culminating in crustal thinning, elevated heat flow and establishment of a North American Basin and Range-style crustal architecture in which basin evolution was linked at depth to bimodal magmatism, high temperature-low pressure metamorphism and the formation of extensional shear zones. This geological evolution and record is amenable to investigation through a combination of mine visits and outcrop geology, and is the principal purpose of this field guide. Rifting initiated in crystalline basement -1840 Ma old and produced three stacked sedimentary basins (1800-1750 Ma Leichhardt, 1730-1670 Ma Calvert and 1670-1575 Ma Isa superbasins) separated by major unconformities and in which depositional conditions progressively changed from fluviatile-lacustrine to fully marine. By 1685 Ma, a deep marine, turbidite-dominated basin existed in the east and basaltic magmas had evolved in composition from continental to oceanic tholeiites as the crust became increasingly thinned and attenuated. Except for an episode of minor deformation and basin inversion at c. 1640 Ma, sedimentation continued across the region until onset of the Isan Orogeny at 1600 Ma.

  • A short article describing the outcomes of the Tasman Frontier Petroleum Industry Workshop held at Geoscience Australia on 8 and 9 March 2012.

  • Numerous disparate and, in many cases, mutually inconsistent models for the Proterozoic amalgamation and evolution of the Australian continent have been published over the past ~15 years. Most of the models involve large-scale relative movements between pre-existing cratonic blocks, as well as accretion of relatively juvenile crust to cratonic margins, via modern style subduction-tectonics. As such, improved geological understanding of the margins of the major constituent cratonic blocks is critical to testing between contrasting evolutionary models. Both the northern and eastern margins of the Gawler Craton, South Australia, are characterised by shear zones with strike lengths of several hundred kilometres; the Karari Shear Zone in the north, and the Kalinjala Shear Zone in the east. Each of these structures preserves evidence for very significant strike-slip motion, but also juxtaposes rocks from different crustal levels indicating significant dip-slip motion. Recently-acquired deep seismic transects across each of these cratonic margins, together with new U-Pb and 40Ar/39Ar geochronology are interpreted to indicate that the Karari Shear Zone was likely active in at least three episodes through the Paleo- and Mesoproterozoic, and currently preserves an overall north-dipping thrust geometry that dates from the early Mesoproterozoic (~1580 - 1450 Ma). In contrast, on the eastern margin of the craton, the northern part of the Kalinjala Shear Zone preserves an east-dipping bulk extensional geometry that dates from the Paleoproterozoic (~1800 - 1740 Ma). The temporal evolution of the margins of the Gawler Craton provides constraints on models invoking tectonic interaction with other parts of Proterozoic Australia.

  • Presentation delivered on 8 March 2012 at the Tasman Frontier Petroleum Industry Workshop, 8-9 March 2012, Geoscience Australia, Canberra.

  • The evolution of the Paleo- and Mesoproterozoic of Australia is controversial. Early tectonic models were largely autochthonous, in part driven by the chemical characteristics of Proterozoic felsic magmatism: overwhelmingly potassic, often with elevated Th and U contents, and with evolved isotopic signatures, consistent with crustal sources and the implication they were not generated within continental arcs. This model has been increasingly challenged over the last 30 years, driven by the recognition of the diversity of Proterozoic magmatism, of linear magmatic belts often with subduction-compatible geochemistry and juvenile isotopic signatures, and of across-strike trends in isotope signatures, all consistent with continental margin processes. These, and other geological evidence for crustal terranes, suggest subduction-related tectonic regimes and collisional orogenesis. Current tectonic models for the Australia Proterozoic invoke such processes with varying number of continental fragments and arcs, related to assembly/break-up of the Nuna Supercontinent. Problems still exist however as the observations of early workers still largely hold-much Proterozoic magmatism was intracratonic, and interpreted backarc magmatism largely lacks obvious related arcs. This has led to more recent hybrid arc-plume models. No one model is completely satisfactory, however, reflecting ambiguity of geochemical data and secular arguments (when did modern-style tectonics actually begin).