palaeovalley
Type of resources
Keywords
Publication year
Topics
-
This report was compiled and written to summarise the four-year Palaeovalley Groundwater Project which was led by Geoscience Australia from 2008 to 2012. This project was funded by the National Water Commission's Raising National Water Standards Program, and was supported through collaboration with jurisdictional governments in Western Australia, South Australia and the Northern Territory. The summary report was published under the National Water Commission's 'Waterlines' series. This document is supported by related publications such as the palaeovalley groundwater literature review, the WASANT Palaeovalley Map and associated datasets, and four stand-alone GA Records that outline the detailed work undertaken at several palaeovalley demonstration sites in WA, SA and the NT. Palaeovalley aquifers are relied upon in outback Australia by many groundwater users and help underpin the economic, social and environmental fabric of this vast region. ‘Water for Australia’s arid zone – Identifying and assessing Australia’s palaeovalley groundwater resources’ (the Palaeovalley Groundwater Project) investigated palaeovalleys across arid and semi-arid parts of Western Australia (WA), South Australia (SA) and the Northern Territory (NT). The project aimed to (a) generate new information about palaeovalley aquifers, (b) improve our understanding of palaeovalley groundwater resources, and (c) evaluate methods available to identify and assess these systems.
-
The Exploring for the Future program Showcase 2024 was held on 13-16 August 2024. Day 4 - 16th August talks included: <b>Session 1 – Deep Dives into the Delamerian</b> <a href="https://youtu.be/09knAwPnD7s?si=acdu6pQgIj7DNlnj">Scaffold to success: An overview of the Delamerian Orogen, and its crustal and lithospheric architecture</a> - Chris Lewis <a href="https://youtu.be/5GQC5f5IkWc?si=rLPqxoZFkxGAEPEf">Only time will tell: Crustal development of the Delamerian Orogen in space and time</a> - David Mole <a href="https://youtu.be/PhdIYE49eqU?si=d7acyv5rbTW_wTiO">Is it a big deal? New mineral potential insights of the Delamerian Orogen</a> - Dr Yanbo Cheng <b>Session 2 – Deep dives into Birrindudu, West Musgrave and South Nicholson–Georgina regions</b> <a href="https://youtu.be/DEbkcgqwLE8?si=sBKGaMTq_mheURib">Northwest Northern Territory Seismic Survey: Resource studies and results</a> - Paul Henson <a href="https://youtu.be/k9vwBa1fM9E?si=VOG19nBC1DAk-jGH">Tracing Ancient Rivers: A hydrogeological investigation of the West Musgrave Region</a> - Joshua Lester <a href="https://youtu.be/Du1JANovz8M?si=1XEOF87gxhSP9UF3">Water's journey: Understanding groundwater dynamics in the South Nicholson and Georgina basins, NT and QLD </a>- Dr Prachi Dixon-Jain <b>Session 3 – Groundwater systems of the Curnamona and upper Darling-Baaka River</b> <a href="https://youtu.be/nU8dpekmEHQ?si=WygIzefKNzsU4gUA">Groundwater systems of the upper Darling-Baaka floodplain: An integrated assessment</a> - Dr Sarah Buckerfield <a href="https://youtu.be/AKOhuDEPxIA?si=ebradAT6EBwHhPQ_">Potential for a Managed Aquifer Recharge Scheme in the upper Darling-Baaka floodplain: Wilcannia region</a> - Dr Kok Piang Tan <a href="https://youtu.be/epUdD8ax2FQ?si=_aMO_e_ZDZESgLOR">Aquifer alchemy: Decoding mineral clues in the Curnamona region</a> - Ivan Schroder Exploring for the Future: Final reflection – Karol Czarnota Resourcing Australia’s Prosperity – Andrew Heap View or download the <a href="https://dx.doi.org/10.26186/149800">Exploring for the Future - An overview of Australia’s transformational geoscience program</a> publication. View or download the <a href="https://dx.doi.org/10.26186/149743">Exploring for the Future - Australia's transformational geoscience program</a> publication. You can access full session and Q&A recordings from YouTube here: 2024 Showcase Day 4 - Session 1 - <a href="https://www.youtube.com/watch?v=4nuIQsl71cY">Deep Dives into the Delamerian</a> 2024 Showcase Day 4 - Session 2 - <a href="https://www.youtube.com/watch?v=9N3dIZRAcHk">Deep dives into Birrindudu, West Musgrave and South Nicholson–Georgina regions</a> 2024 Showcase Day 4 - Session 3 - <a href="https://www.youtube.com/watch?v=_ddvLAnUdOI">Groundwater systems of the Curnamona and upper Darling-Baaka River</a>
-
<div>This report details results and methodology from two hydrochemistry sampling programs performed as part of Geoscience Australia’s Musgrave Palaeovalley Project. The Musgrave Palaeovalley Project is a data acquisition and scientific investigation program based around the central west of Australia. It is aimed at investigating groundwater processes and resources within the Cenozoic fill and palaeovalleys of the region. This project, and many others, have been performed as part of the Exploring for the Future (EFTF) program, an eight-year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program.</div><div>Data released here is from 18 bores sampled for groundwater and tested for a range of analytes including field parameters, major and minor elements, isotopes and trace gases. The sampling methods, quality assurance/quality control procedures, analytical methods and results are included in this report.</div>
-
These conductivity grids were generated by gridding the top 22 layers from the airborne electromagnetics (AEM) conductivity models from the Western Resource Corridor AusAEM survey (https://dx.doi.org/10.26186/147688), the Earaheedy and Desert Strip AusAEM survey (https://pid.geoscience.gov.au/dataset/ga/145265) and several industry surveys (https://dx.doi.org/10.26186/146278) from the West Musgraves. The grids resolve important subsurface features for assessing the groudnwater system including lithologial boundaires, palaeovalleys and hydrostatigraphy.
-
<div>As part of the $225 million Exploring for the Future programme, Geoscience Australia have undertaken an investigation into the resource potential of the Officer-Musgrave-Birrindudu region. Part of this project focusses on characterising palaeovalley groundwater resources within the West Musgrave region of Australia. This GA Record is a technical report detailing the science undertaken as part of the Musgrave Palaeovalley groundwater project. The project aimed to improve understanding of the region's palaeovalley architecture, groundwater quality, and overall hydrogeology to support responsible water resource management. The most significant work undertaken included three-dimensional modelling of palaeovalley architecture, groundwater characterisation using hydrochemistry, groundwater model conceptualisation and a detailed review of local groundwater around remote communities in the region. This work will underpin responsible groundwater management into the future.</div>
-
This data release includes SPECTREM® AEM data from eleven airborne electromagnetic (AEM) surveys in Western Australia, originally flown for Anglo American Exploration (Australia) Pty Ltd in 2009, 2011 and 2012 and a survey flown in South Australia for Metex Nickel Pty Ltd in 2012. Data for each survey are open-file and were downloaded from the Government of Western Australia, Department of Mines, Industry Regulation and Safety and Government of South Australia, Department of Energy and Mining. AEM data were re-processed and re-inverted to produce conductivity models and a suit of derived datasets using Geoscience Australia Layered-Earth-Inversion as a single standard processing and inversion method to improve continuity and data quality. This data release includes visualisation products including conductivity sections, grids, s-grids, georeferenced sections and earth-sci sections.
-
<div>The Kati Thanda – Lake Eyre Basin (KT–LEB) covers about 1.2 million square kilometres of outback Australia. Although the basin is sparsely populated and relatively undeveloped it hosts nationally significant environmental and cultural heritage, including unique desert rivers, sweeping arid landscapes, and clusters of major artesian springs. The basin experiences climatic extremes that intermittently cycle between prolonged droughts and massive inland floods, with groundwater resources playing a critical role in supporting the many communities, industries, ecological systems, and thriving First Nations culture of the KT–LEB.</div><div><br></div><div>As part of Geoscience Australia’s National Groundwater Systems Project (in the Exploring for the Future Program) this report brings together contemporary data and information relevant to understanding the regional geology, hydrogeology and groundwater systems of Cenozoic rocks and sediments of the KT–LEB. This work represents the first whole-of-basin assessment into these vitally important shallow groundwater resources, which have previously received far less scientific attention than the deeper groundwater systems of the underlying Eromanga Basin (part of the Great Artesian Basin). The new knowledge and insights about the geology and hydrogeology of the basin generated by this study will benefit the many users of groundwater within the region and will help to improve sustainable management and use of groundwater resources across the KT–LEB.</div><div><br></div>
-
This report presents groundwater level information collected during Geoscience Australia’s Musgrave Palaeovalley Project. The Musgrave Palaeovalley Project was conducted as part of Exploring for the Future (EFTF), an Australian Government funded geoscience data and information acquisition program. The eight-year, $225 million program aims to deliver new geoscience data and knowledge to inform decision-making by government, community, and industry on the sustainable development of Australia's mineral, energy, and groundwater resources.</div><div>Groundwater level data was collected during two hydrogeochemical surveys undertaken in March and May 2023 based around the remote communities of Warburton, Kaltukatjara, Wanarn, Blackstone and Jameson in Western Australia and the Northern Territory. Sixteen bores were measured for their groundwater levels. The results are contained herein and within the attached CSV file.
-
As part of the $225 million Exploring for the Future programme, Geoscience Australia have undertaken an investigation into the resource potential of the Officer-Musgrave-Birrindudu region. Part of this project focusses on characterising palaeovalley groundwater resources within the West Musgrave region of Australia. This record presents a three-dimensional palaeovalley model and describes the method used in its generation. Understanding the 3D architecture of palaeovalleys is an important component of conceptualising the shallow groundwater system. In this region groundwater is the only significant water resource, and is critical for supporting local communities, industries and the environment. The data products released alongside this record are a base of gridded Cenozoic surface, a grid of the thickness of the Cenozoic and polygons defining the spatial extent of palaeovalleys. The study area encompasses the upper reaches of several large palaeovalleys. These valleys incised mostly crystalline rocks of the Musgrave Province and sedimentary rocks of the adjoining basin during the late Cretaceous. Subsequently, valleys were filled by Cenozoic-aged sediments, which now form the aquifers and aquitards of the modern-day groundwater system. Palaeovalley architecture has been shaped by a complex interplay of climatic, tectonic, and geological factors over geological time. In some cases, tectonic deformation has caused tilting or disruption of palaeovalleys with implications for groundwater flow. We modelled the base of Cenozoic surface across the project area and used this geological surface to identify palaeovalleys. The modelling process used airborne electromagnetic conductivity models, borehole data and geological outcrop as model inputs. Using these data, we interpreted the base of Cenozoic along AEM flightlines, at borehole locations and at the surface where Pre-Cenozoic geology was cropping out. These data were gridded to generate the base of Cenozoic surface. This surface was then used as the basis for interpreting palaeovalley extents. The resulting model is adequate for its purpose of better understanding the groundwater system. However, the model has considerable uncertainty due to uncertainty in the model inputs and data sparsity. The model performed much better within the centre of the project area within the Musgrave Province compared to the adjoining basins.