From 1 - 10 / 39
  • The National Geochemical Survey of Australia (<a href="http://www.ga.gov.au/ngsa" title="NGSA website" target="_blank">NGSA</a>) is Australia’s only internally consistent, continental-scale <a href="http://dx.doi.org/10.11636/Record.2011.020" title="NGSA geochemical atlas and dataset" target="_blank">geochemical atlas and dataset</a>. The present dataset contains additional mineralogical data obtained on NGSA samples selected from the Darling-Curnamona-Delamerian (<a href="https://www.ga.gov.au/eftf/projects/darling-curnamona-delamerian" title="DCD website" target="_blank">DCD</a>) region of southeastern Australia for the first partial data release of the Heavy Mineral Map of Australia (HMMA) project. The HMMA, a collaborative project between Geoscience Australia and Curtin University underpinned by a pilot project establishing its feasibility, is part of the Australian Government-funded Exploring for the Future (<a href="https://www.ga.gov.au/eftf" title="EFTF website" target="_blank">EFTF</a>) program. The selected 223 NGSA sediment samples fall within the DCD polygon plus an approximately one-degree buffer. The samples were taken on average from 60 to 80 cm depth in floodplain landforms, dried and sieved to a 75-430 µm grainsize fraction, and the contained heavy minerals (HMs; i.e., those with a specific gravity >2.9 g/cm<sup>3</sup>) were separated by dense fluids and mounted on cylindrical epoxy mounts. After polishing and carbon-coating, the mounts were subjected to automated mineralogical analysis on a TESCAN® Integrated Mineral Analyzer (TIMA). Using scanning electron microscopy and backscatter electron imaging integrated with energy dispersive X-ray analysis, the TIMA identified over 140 different HMs in the DCD area. The dataset, consisting of over 29 million individual mineral grains identified, was quality controlled and validated by an expert team. The data released here can be visualised, explored and downloaded using an online, bespoke mineral network analysis tool (<a href="https://geoscienceaustralia.shinyapps.io/mna4hm/" title="MNA website" target="_blank">MNA</a>) built on a cloud-based platform. Accompanying this report are a data file of TIMA results and a mineralogy vocabulary file. When completed in 2023, it is hoped the HMMA project will positively impact mineral exploration and prospectivity modelling around Australia, as well as have other applications in earth and environmental sciences.

  • The Upper Darling Floodplain AEM Survey is part of the Exploring for the Future Program. This scientific research is being carried out to obtain data that will enhance understanding of the groundwater resources of the upper Darling River region. This information will support future water resource management decision-making in the region.

  • As part of the program, the Darling-Curnamona-Delamerian project is investigating the groundwater potential of the upper Darling River floodplain, as well as the mineral and groundwater potential of parts of eastern South Australia, western New South Wales, western Victoria and western Tasmania. Communities, industries and the environment in the upper Darling River region have been impacted by recent droughts. During periods of low flow in the Darling River, groundwater has the potential to be an alternative water source for towns, agriculture and mining. The aim of the Upper Darling River Floodplain Groundwater study is to identify and better understand groundwater supplies beneath the floodplain and its surrounds. When combined with innovative water storage options, these groundwater resources could provide enhanced drought security and promote regional development. The study area covers ~31,000 km2 and includes a 450 km stretch of the Darling River floodplain from Wilcannia upstream to Bourke and Brewarrina.

  • The Exploring for the Future program Showcase 2023 was held on 15-17 August 2023. Day 3 - 17th August talks included: Geological Processes and Resources Session Large scale hydrogen storage: The role of salt caverns in Australia’s transition to net zero – Dr Andrew Feitz Basin-Hosted Base Metal Deposits – Dr Evgeniy Bastrakov Upper Darling Floodplain: Groundwater dependent ecosystem assessment – Dr Sarah Buckerfield Atlas of Australian Mine Waste: Waste not, want not – Jane Thorne Resource Potential Theme National-scale mineral potential assessments: supporting mineral exploration in the transition to net zero – Dr Arianne Ford Australia’s Onshore Basin Inventories: Energy – Tehani Palu Prioritising regional groundwater assessments using the national hydrogeological inventory – Dr Steven Lewis Assessing the energy resources potential in underexplored regions – Dr Barry Bradshaw You can access the recording of the talks from YouTube here: <a href="https://youtu.be/pc0a7ArOtN4">2023 Showcase Day 3 - Part 1</a> <a href="https://youtu.be/vpjoVYIjteA">2023 Showcase Day 3 - Part 2</a>

  • Geoscience Australia, in collaboration with state governments, will be carrying out airborne electromagnetic (AEM) surveys in eastern South Australia and western NSW and Victoria during 2022. The Australian Government’s Exploring for the Future program, led by Geoscience Australia, is committed to supporting a strong economy, resilient society and sustainable environment for the benefit of Australians. At its heart, the program is about contributing to a sustainable, long-term future for Australia through an improved understanding of the nation’s mineral, energy and groundwater resource potential <p>

  • Australia remains underexplored or unexplored, boasting discovery potential in the mineral, groundwater, and energy resources hidden beneath the surface. These “greenfield” areas are key to Australia’s future prosperity and sustainability. Led by Geoscience Australia, Australia’s national government geoscience organisation, the Exploring for the Future program was a groundbreaking mission to map Australia’s mineral, energy, and groundwater systems in unparalleled scale and detail. The program has advanced our understanding of Australia’s untapped potential. Over the course of 8 years, the Exploring for the Future program provided a significant expansion of public, precompetitive geoscience data and information, equipping decision-makers with the knowledge and tools to tackle urgent challenges related to Australia’s resource prosperity, energy security, and groundwater supply.

  • Short abstract: The Delamerian Orogen is spatially and temporally extensive, covering five states in central and eastern Australia. The orogen records the transition from Proterozoic Australia to the Phanerozoic Tasmanides, starting with rifting of the Rodinian supercontinent and transition to a passive margin from ca. 830 to 530 Ma, then developing as a convergent eastern Gondwanan margin from ca. 530 Ma that was terminated by the mid-to-late Cambrian Delamerian Orogeny. The orogen was later impacted by younger geodynamic events, particularly in the Ordovician-Silurian-Devonian. Due to the paucity of exposure, in particular in its central segment, and the complex cover sequences, significant parts of the Delamerian Orogen remain poorly documented. The orogen is also underexplored for resources despite demonstrated potential for magmatic-hydrothermal and other mineral systems. As part of the Exploring for the Future program, the Darling-Curnamona-Delamerian project is working to improve geodynamic framework and mineral systems knowledge through a range of activities including; analysis of legacy drill core, new stratigraphic drilling and major geophysical data acquisition campaigns (airborne electromagnetic, deep crustal seismic reflection, magnetotelluric). Significant first results reveal the existence of a corridor of Siluro-Devonian igneous rocks flanked by Cambrian igneous rocks within the Loch Lilly-Kars Belt, possibly related to an episode of rifting or extension, with potential for rift-related and magmatic-hydrothermal mineral systems of that age. <b>Citation:</b> Gilmore P.J., Roach I.C., Doublier M.P., Mole D.R., Cheng Y., Clark A.D. & Pitt L., 2023. From The Delamerian Orogen: exposing an undercover arc. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/148679

  • The Exploring for the Future program Showcase 2023 was held on 15-17 August 2023. Day 1 - 15th August talks included: Resourcing net zero – Dr Andrew Heap Our Geoscience Journey – Dr Karol Czarnota You can access the recording of the talks from YouTube here: <a href="https://youtu.be/uWMZBg4IK3g">2023 Showcase Day 1</a>

  • Communities and ecosystems along the Darling River face critical water shortages and water quality issues including high salinity and algal blooms due to a reliance on declining surface water flows, which are impacted by extraction and drought, exacerbated by increases in temperature driven by climate change. The Darling River, characterised by highly variable flows, is the primary water source for the region and our understanding of the spatial extent and character of lower salinity groundwater within the surrounding Darling Alluvium, which could provide an alternative water source, is limited. Scientific understanding of the highly variable groundwater-surface water system dynamics of the Darling River is also an integral part of the evidence base required to manage the water resources of the wider Murray-Darling Basin, which has experienced critical water shortages for domestic and agricultural consumptive use and serious ecological decline due to reduced flows. Other relevant groundwater systems in the study area include aquifers of the underlying Eromanga and Surat Basins in the north, aquifers of the Murray Basin in the south, and fractured rock aquifers of the Darling Basin in the south-central area. Understanding of connectivity between these systems and the groundwater systems within the Darling Alluvium, and surface water of the Darling River, is also limited. Here we present the findings of a desktop analysis combining previous research with new analysis on water level, hydrochemistry, and Airborne Electromagnetic depth sections. This integration suggests that basement geometry and hydrostratigraphy within the Darling Alluvium are key structural controls on surface-groundwater connectivity, and the occurrence of a saline groundwater system within the lower part of the alluvium which impacts the quality of surface water and shallow alluvial groundwater resources. Further data acquisition and integrated analysis are planned to test these relationships as part of the Upper Darling Floodplain project. <b>Citation:</b> Buckerfield S., McPherson A., Tan K. P., Kilgour P. & Buchanan S., 2022. From Upper Darling Floodplain groundwater resource assessment. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146847

  • <div>The Exploring for the Future program, led by Geoscience Australia, was a $225 million Australian Government investment over 8 years, focused on revealing Australia’s mineral, energy, and groundwater potential by characterising geology.&nbsp;&nbsp;This report provides an overview of activities, results, achievements and impacts from the Exploring for the Future program, with a particular focus on the last four years (2020-2024). &nbsp;</div>