From 1 - 10 / 54
  • Magnetotellurics (MT) is a passive geophysical method which uses natural time variations of the Earth's magnetic and electric fields to measure the electrical resistivity of the sub-surface. Electrical resistivity is a bulk property of a volume of Earth material and is associated with factors such as rock composition, porosity and permeability as well as temperature and pressure. The Magnetotelurics (MT) Data Collection includes datasets from The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) and regional-scale MT surveys across the Australian continent. These data were collected by Geoscience Australia in collaboration with the State and Territory Geological Surveys and other partners. <b>Value: </b>Magnetotelluric data to expand the geoscientific understanding of the earth's lithospheric structure and provide new insights into Australia's onshore energy and mineral potential. <b>Scope: </b>AusLAMP is being conducted over multiple years to create a national MT dataset and map lithospheric structure of the Australian continent. MT data have also been acquired for mapping crustal structure and resource potential at regional scale. These data provide valuable information for multi-disciplinary interpretations. To view the magnetotellurics data via the Geoscience Australia internet page click on the following URL: <a href="https://www.ga.gov.au/about/projects/resources/regional-mt-program">https://www.ga.gov.au/about/projects/resources/regional-mt-program</a> For further information about the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) click on the following URL: <a href="https://www.ga.gov.au/about/projects/resources/auslamp">https://www.ga.gov.au/about/projects/resources/auslamp</a>

  • The National Spectral Database (NSD) houses data from Australian remote sensing scientists. The database includes spectra covering targets as diverse as mineralogy, soils, plants, water bodies and various land surfaces. Currently the database holds spectral information from multiple locations across the country and as the collection grows in spatial / temporal coverage, the NSD will service continental scale validation requirements of the Earth observation community for satellite-based measurements of surface reflectance. <b>Value:</b> Curated spectral data provides a wealth of knowledge to remote sensing scientists. For other parties interested in calibration and validation (Cal/Val) of surface reflectance products, the Geoscience Australia (GA) Cal/Val dataset provides a useful resource of ground-truth data to compare to reflectance captured by Landsat 8 and Sentinel 2 satellites. The Aquatic Library is a robust collection of Australian datasets from 1994 to present time, primarily of end-member and substratum measurements. The University of Wollongong collection represents immense value in end-member studies, both terrestrial and aquatic. <b>Scope:</b> The NSD covers Australian data including historical datasets as old as 1994. Physical study sites encompass locations around Australia, with spectra captured in every state. <b>Data types:</b> - Spectral data: raw digital numbers (DN), radiance and reflectance.  - From spectral bands VIS-NIR, SWIR1 & SWIR2: wavelengths 350nm - 2500nm collected with instruments in the field or lab setting. Contact for further information: NSDB_manager@ga.gov.au

  • Comprises a national satellite imagery mosaic and derived information products produced by a collaboration of CSIRO, Geoscience Australia (GA) and State and Territory Surveys, and several additional national and international collaborators. Mineral products were derived using a validated mosaic of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. <b>Value: </b>The data are used to understand distributions of and changes in surface materials and assessment of environmental, agricultural and resource potential. <b>Scope: </b>This dataset covers the continent with the intent to provide the best quality mosaic from 10+ year archive of scenes across Australia (i.e., lowest cloud/vegetation cover, high sun angle etc)

  • Wind multipliers are factors that transform wind speeds over open, flat terrain (regional wind speeds) to local wind speeds that consider the effects of direction, terrain (surface roughness), shielding (buildings and structures) and topography (hills and ridges). During the assessment of local wind hazards (spatial significance in the order 10's of metres), wind multipliers allow for regional wind speeds (order 10 to 100's of kilometres) to be factored to provide local wind speeds. <b>Value: </b>The wind multiplier data is used in modelling the impacts (i.e. physical damage) of wind-related events such as tropical cyclones (an input for Tropical Cyclone Risk assessment), thunderstorms and other windstorms. <b>Scope: </b>Includes terrain, shielding and topographic multipliers for national coverage. Each multiplier further contains 8 directions.

  • This collection supports the compilation of national mineral resource and production statistics, and mineral prospectivity analysis. The collection includes the location of Australian mineral occurrences and mineral deposit descriptions, with geological, resource and production data. This information is stored in two Geoscience Australia databases, the Mineral Deposits & Occurrences Database (OZMIN) and the Mineral Occurrence Locations (MINLOC) database. The collection also includes a number of supporting Geographic Information System (GIS) datasets (e.g., mineral prospectivity datasets, ports, power stations); maps and reports. <b>Value:</b> Data related to the known location and production of mineral resources supports decisions related to resource and economic development. <b>Scope: </b>The collection covers the Australian continent and is updated annually. It now contains data on over one thousand major and historically significant mineral deposits for 60 mineral commodities (including coal).

  • The Topographic Position Index measures the topographic slope position of landforms by comparing the mean elevation of a specific neighbourhood area with the elevation value of a central cell. This is done for every cell or pixel in the digital elevation model (DEM) to derive the relative topographic position (e.g. upper, middle and lower landscape elements). Ruggedness informs on the roughness of the surface and is calculated as the standard deviation of elevations. Both these terrain components are used to generate a multi-scale topographic index over the Australian continent using the algorithm developed by Lindsay, J, B., Cockburn, J. M. H. and Russell, H. A. J., 2015. An integral image approach to performing multi-scale topographic position analysis, Geomorphology, 245, 51-61. Topographic position is captured across three spatial scale and display as a ternary image. The ternary image reveals a rich representation of nested landform features with broad application to geomorphological and hydrological process understanding and mapping of regolith and soils. <b>Value: </b>Broad application in understanding geomorphological and hydrological processes and in mapping regolith and soils over the Australian continent. Can be used as inputs into geospatial modelling and machine learning <b>Scope: </b>The dataset is national. The algorithm can be run on any digital elevation gridded dataset.

  • Collection of field notebooks recording mainly geological observations made by staff of Geoscience Australia (GA) and its predecessors, Bureau of Mineral Resources (BMR) and Australian Geological Survey Organisation (AGSO), while conducting fieldwork between 1930 and 2010. The notebooks are currently being digitised. <b>Value: </b>Historic and scientific significance. Many sites visited are remote and have rarely been revisited. Some notebooks also record observations on fauna and flora. <b>Scope: </b>Geographical scope is largely Australia, pre- and post-Independence Papua New Guinea (PNG), and the Australian Antarctic Territory, but other countries and territories are represented.

  • Radiogenic isotopes decay at known rates and can be used to interpret ages for minerals, rocks and geologic processes. Different isotopic systems provide information related to different time periods and geologic processes, systems include: U-Pb and Ar/Ar, Sm-Nd, Pb-Pb, Lu-Hf, Rb-Sr and Re-Os isotopes. The GEOCHRON database stores full analytical U-Pb age data from Geoscience Australia's (GA) Sensitive High Resolution Ion Micro-Probe (SHRIMP) program. The ISOTOPE database is designed to expand GA's ability to deliver isotopic datasets, and stores compiled age and isotopic data from a range of published and unpublished (GA and non-GA) sources. OZCHRON is a depreciated predecessor to GEOCHRON and ISOTOPE, the information once available in OZCHRON is in the process of migration to the two current databases. The ISOTOPE compilation includes sample and bibliographic links through the A, FGDM, and GEOREF databases. The data structure currently supports summary ages (e.g., U-Pb and Ar/Ar) through the INTERPRETED_AGES tables, as well as extended system-specific tables for Sm-Nd, Pb-Pb, Lu-Hf and O- isotopes. The data structure is designed to be extensible to adapt to evolving requirements for the storage of isotopic data. ISOTOPE and the data holdings were initially developed as part of the Exploring for the Future (EFTF) program - particularly to support the delivery of an Isotopic Atlas of Australia. During development of ISOTOPE, some key considerations in compiling and storing diverse, multi-purpose isotopic datasets were developed: 1) Improved sample characterisation and bibliographic links. Often, the usefulness of an isotopic dataset is limited by the metadata available for the parent sample. Better harvesting of fundamental sample data (and better integration with related national datasets such as Australian Geological Provinces and the Australian Stratigraphic Units Database) simplifies the process of filtering an isotopic data compilation using spatial, geological and bibliographic criteria, as well as facilitating 'audits' targeting missing isotopic data. 2) Generalised, extensible structures for isotopic data. The need for system-specific tables for isotopic analyses does not preclude the development of generalised data-structures that reflect universal relationships. GA has modelled relational tables linking system-specific Sessions, Analyses, and interpreted data-Groups, which has proven adequate for all of the Isotopic Atlas layers developed thus far. 3) Dual delivery of 'derived' isotopic data. In some systems, it is critical to capture the published data (i.e. isotopic measurements and derived values, as presented by the original author) and generate an additional set of derived values from the same measurements, calculated using a single set of reference parameters (e.g. decay constant, depleted-mantle values, etc.) that permit 'normalised' portrayal of the data compilation-wide. 4) Flexibility in data delivery mode. In radiogenic isotope geochronology (e.g. U-Pb, Ar-Ar), careful compilation and attribution of 'interpreted ages' can meet the needs of much of the user-base, even without an explicit link to the constituent analyses. In contrast, isotope geochemistry (especially microbeam-based methods such as Lu-Hf via laser ablation) is usually focused on the individual measurements, without which interpreted 'sample-averages' have limited value. Data delivery should reflect key differences of this kind. <b>Value: </b>Used to provide ages and isotope geochemistry data for minerals, rocks and geologic processes. <b>Scope: </b>Australian jurisdictions and international collaborative programs involving Geoscience Australia

  • The national Marine Sediments collection is a scientific resource that includes information for samples collected within the Australian marine jurisdiction, including location, water depth, sampling method and sample descriptions. Data are provided from quantitative analyses of the samples, such as grain size, mud, sand, gravel and carbonate concentrations. Additional analyses on some samples include mineralogy, age determinations, geochemical properties, and physical attributes for down-core samples including bulk density, p-wave velocity, porosity and magnetic susceptibility. Images and graphics are presented, where available. MARS currently holds >40,000 sample and sub-sample records, and approximately 200,000 records describing the characteristics of these samples. New data are being added as they become available. <b>Value: </b>Seabed sediment data is used to characterise the surface geology of the sea floor, important in resource exploration, marine zone management and understanding the physical environment. <b>Scope: </b>Samples were collected from Australia's marine jurisdiction, including the Australian Antarctic Territory. >40,000 sample and sub-sample records, and approximately 200,000 records describing the characteristics of these samples.

  • Parametric dataset of earthquakes in the Australian region, with magnitudes greater than 2.5. Includes records of instrumentally recorded earthquakes and explosions, and earthquake parameters inferred from historic documents. Threshold magnitude of completeness varies spatially and temporally. <b>Value: </b>This data has historic value, and is used in assessment of earthquake hazard, risk and potential impacts from future events. <b>Scope: </b>A catalogue of known historical earthquakes in Australia and adjacent regions.