AusArray
Type of resources
Keywords
Publication year
Topics
-
Geoscience Australia’s Exploring for the Future program (EFTF) provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. The Australian Passive Seismic Array Project (AusArray) program developed from a long history of passive seismic imaging in Australia involving many contributors. Building on this history, the Australian Government (EFTF), academia and state governments have united around AusArray. The objective is a standardised and quality controlled national passive seismic data coverage and an updatable national seismic velocity model framework that can be used as a background for higher-resolution studies. The AusArray passive seismic data are supplemented with active seismic data that can provide P-wave and S-wave velocity information for the near surface down to about 50 m depth. This near-surface velocity data will provide constraints for some AusArray passive seismic data modelling to obtain more reliable depth models. This document details the active seismic data acquisition using TROMINO® three-axis broadband seismometers using a wireless trigger and hammer source. Equipment packing, field operations, data extraction and preparation, and Multichannel Analysis of Surface Waves (MASW) modelling are described.
-
The Australian Passive Seismic Array Project (AusArray) program was developed from a long history of passive seismic imaging in Australia involving many contributors. Building on this history, the Australian Government and academia have united around AusArray. The objective is a standardised and quality controlled national passive seismic data coverage and an updatable national seismic velocity model framework that can be used as a background for higher-resolution studies. This document details the field activities and equipment preparation for temporary passive seismic station deployment, service and retrieval. Equipment cleaning and testing and database details are also described. The standard operating procedures applied during these activities were established during the deployment of two temporary passive seismograph arrays under the Australian Government’s Exploring for the Future (EFTF) program. These arrays consisted of 120–130 stations deployed in the Northern Territory and Queensland for over a year in a grid pattern with a lateral spacing of half a degree (~55 km). The temporary passive seismograph stations comprised Nanometrics Trillium Compact 120S broadband seismic sensors connected to a Güralp minimus digitiser. Batteries charged by a solar panel powered both instruments. Each station in the array was serviced, i.e. repairs if required and interim data was retrieved, at least once during the deployment.
-
This animation shows how passive seismic surveys Work. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what passive seismic equipment looks like, what the equipment measures and how the survey works.
-
To improve exploration success undercover, the UNCOVER initiative identified high-resolution 3D seismic velocity characterisation of the Australian plate as a high priority. To achieve this goal, the Australian Government and academia have united around the Australian Passive Seismic Array Project (AusArray). The aim is to obtain a national half-degree data coverage and an updatable 3D national velocity model, which grows in resolution as more data become available. AusArray combines data collected from the Australian National Seismological Network (ANSN), multiple academic transportable arrays (supported by AuScope and individual grants) and the Seismometers in Schools program. The Exploring for the Future program has enable the unification of these datasets and a doubling of the national rate of data acquisition. Extensive quality control checks have been applied across the AusArray dataset to improve the robustness of subsequent tomographic inversion and interpretation. These data and inversion code framework allow robust national-scale imaging of the Earth to be rapidly undertaken at depths of a few metres to hundreds of kilometres. <b>Citation:</b> Gorbatov, A., Czarnota, K., Hejrani, B., Haynes, M., Hassan, R., Medlin, A., Zhao, J., Zhang, F., Salmon, M., Tkalčić, H., Yuan, H., Dentith, M., Rawlinson, N., Reading, A.M., Kennett, B.L.N., Bugden, C. and Costelloe, M., 2020. AusArray: quality passive seismic data to underpin updatable national velocity models of the lithosphere. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4. http://dx.doi.org/10.11636/135284 <b>Data for this product are available on request from clientservices@ga.gov.au (see data description). Last updated 08/08/2024 - Quote eCat# 135284</b>
-
In recent years there has been a considerable expansion of deployments of portable seismic stations across Australia, which have been analysed by receiver function or autocorrelation methods to extract estimates of Moho depth. An ongoing program of full-crustal reflection profiles has now provided more than 25,000 km of reflection transects that have been interpreted for Moho structure. The Moho dataset is further augmented by extensive marine reflection results. These new data sources have been combined with earlier refraction and receiver function results to provide full continental coverage, though some desert areas remain with limited sampling. The dense sampling of the Moho indicates the presence of rapid changes in Moho depth and so the Moho surface has been constructed using an approach that allows different weighting and spatial influence depending on the nature of the estimate. The inclusion of Moho results from gravity inversion with low weighting helps to resolve the continent-ocean transition and to provide additional control in the least sampled zones. The refined distribution indicates the presence of widespread smaller-scale variations in Moho structure. Strong lateral contrasts in crustal thickness remain, but some have become more subdued with improved sampling of critical areas. The main differences from earlier results lie in previously poorly sampled regions around the Lake Eyre Basin, where additional passive seismic results indicate somewhat thicker crust though still witha strong contrast in crustal thickness to the cratonic zone to the west. Appeared in Geophysical Journal International, January 2023
-
<div><strong>Output Type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract:</strong> Under the Exploring for the Future (EFTF) program, Geoscience Australia staff and collaborators engaged with land-connected stakeholders that managed or had an interest in land comprising 56% of the total land mass area of Australia. From 2020 to 2023, staff planning ground-based and airborne geophysical and geological data acquisition projects consulted farmers, National Park rangers and managers, Native Title holders, cultural heritage custodians and other land-connected people to obtain land access and cultural heritage clearances for surveys proposed on over 122,000 parcels of land. Engagement did not always result in field activities proceeding. To support communication with this diverse audience, animations, comic-style factsheets, and physical models, were created to help explain field techniques. While the tools created have been useful, the most effective method of communication was found to be a combination of these tools and open two-way discussions.</div><div><br></div><div><strong>Citation: </strong>Sweeney, M., Kuoni, J., Iffland, D. & Soroka, L., 2024. Improving how we engage with land-connected people about geoscience. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts. Geoscience Australia, Canberra. https://doi.org/10.26186/148760</div>
-
The AusArray program aims to install small temporary passive seismic stations every 200 km across Australia. The seismic stations will passively measure small natural vibrations that travel through the Earth to help scientists understand the distribution and composition of rocks beneath the ground. Seismometers are sensitive instruments used to measure small natural vibrations that travel through the Earth caused by earthquakes, waves breaking on the shore and even wind. The data collected are analysed to create a three-dimensional model of the Earth’s subsurface. Passive seismic data can be used to model the Earth‘s structure, which is used to infer the geological history and assess the resource potential and natural hazards of the region.
-
<div>The active seismic and passive seismic database contains metadata about Australian land seismic surveys acquired by Geoscience Australia and its collaborative partners. </div><div>For active seismic this is onshore surveys with metadata including survey header data, line location and positional information, and the energy source type and parameters used to acquire the seismic line data. For passive seismic this metadata includes information about station name and location, start and end dates, operators and instruments. Each also contains a field that contains links to the published data. </div><div><br></div><div>The active and passive seismic database is a subset of tables within the larger Geophysical Surveys and Datasets Database and development of these databases was completed as part of the second phase of the Exploring for the Future (EFTF) program (2020-2024). The resource is accessible via the Geoscience Australia Portal (https://portal.ga.gov.au/), under 'Geophysics'. Use 'active seismic' or 'passive seismic' as search terms. </div><div><br></div>
-
<div>Finding new mineral deposits hidden beneath the sedimentary cover of Australia has become a national priority, given the country’s economic dependence on natural resources and urgent demand for critical minerals for a sustainable future. A fundamental first step in finding new deposits is to characterise the depth of sedimentary cover. Excellent constraints on the sedimentary thickness can be obtained from borehole drilling or active seismic surveys. However, these approaches are expensive and impractical in the remote regions of Australia. With over three quarters of the continent being covered in sedimentary and unconsolidated material, this poses a significant challenge to exploration.</div><div><br></div><div>Recently, a method for estimating the sedimentary thickness using passive seismic data, the collection of which is relatively simple and low-cost, was developed and applied to seismic stations in South Australia. The method uses receiver functions, specifically the delay time of the P-to-S converted phase generated at the interface of the sedimentary basement, relative to the direct-P arrival, to generate a first order estimate of the thickness of sedimentary cover. In this work we apply the same method to the vast array of seismic stations across Australia, using data from broadband stations in both permanent and temporary networks. We also investigate using the two-way traveltime of shear waves, obtained from the autocorrelation of radial receiver functions, as a related yet separate estimate of sedimentary thickness. </div><div><br></div><div>From the new receiver function delay time and autocorrelation results we are able to identify many features, such as the relatively young Cenozoic Eucla and Murray Basins. Older Proterozoic regions show little signal, likely due to the strong compaction of sediments. A comparison with measurements of sedimentary thickness from local boreholes gives a straightforward predictive relationship between the delay time and the cover thickness, offering a simple and cheap way to characterise the sedimentary thickness in unexplored areas from passive seismic data. This study and some of the data used are funded and supported by the Australian Government's Exploring for the Future program led by Geoscience Australia. Abstract to be submitted to/presented at the American Geophysical Union (AGU) Fall Meeting 2023 (AGU23) - https://www.agu.org/fall-meeting
-
The Exploring for the Future program Showcase 2024 was held on 13-16 August 2024. Day 2 - 14th August talks included: <b>Session 1 - Architecture of the Australian Tectonic Plate</b> <a href="https://youtu.be/a8jzTdNdwfk?si=OWNlVR-FLDhF1GVM">AusArray: Australian lithosphere imaging from top to bottom</a> - Dr Alexei Gorbatov <a href="https://youtu.be/j5ox8Ke5n6M?si=YkfDno2xmZXueS1b">AusLAMP: Mapping lithospheric architecture and reducing exploration space in Australia</a> - Jingming Duan <a href="https://youtu.be/qZ6wjzx_dNc?si=NjDEzvqyEeM24-E8">Constraining the thermomechanical and geochemical architecture of the Australian mantle: Using combined analyses of xenolith inventories and seismic tomography</a> - Dr Mark Hoggard <b>Session 2 - Quantitative characterisation of Australia's surface and near surface</b> <a href="https://youtu.be/nPfa_j3_dos?si=mktfIJWXeLElIOK4">AusAEM: The national coverage and sharpening near surface imaging</a> - Dr Anandaroop Ray <a href="https://youtu.be/SU6ak98JvAw?si=DQPovulHa4poqcm0">Unlocking the surface geochemistry of Australia</a> - Phil Main <a href="https://youtu.be/Xtm45CT6e-s?si=JHU7J-ktgVrbj1Ke">Spotlight on the Heavy Mineral Map of Australia</a> - Dr Alex Walker <b>Session 3 – Maps of Australian geology like never before</b> <a href="https://youtu.be/aRISb1YYigU?si=3byJbqW0qRTqCB8-">An Isotopic Atlas of Australia: Extra dimensions to national maps</a> - Dr Geoff Fraser <a href="https://youtu.be/khSy-WAkw-w?si=F-Y67FX3jXN5zZaz">First continental layered geological map of Australia</a> - Dr Guillaume Sanchez <a href="https://youtu.be/Z3GlCJepLK4?si=k_tbaKdmxGBmoSro">An integrated 3D layered cover modelling approach: Towards open-source data and methodologies for national-scale cover modelling</a> - Sebastian Wong View or download the <a href="https://dx.doi.org/10.26186/149800">Exploring for the Future - An overview of Australia’s transformational geoscience program</a> publication. View or download the <a href="https://dx.doi.org/10.26186/149743">Exploring for the Future - Australia's transformational geoscience program</a> publication. You can access full session and Q&A recordings from YouTube here: 2024 Showcase Day 2 - Session 1 - <a href="https://www.youtube.com/watch?v=EHBsq0-pC8c">Architecture of the Australian Tectonic Plate</a> 2024 Showcase Day 2 - Session 2 - <a href="https://youtube.com/watch?v=xih4lbDk-1A">Quantitative characterisation of Australia's surface and near surface</a> 2024 Showcase Day 2 - Session 3 - <a href="https://www.youtube.com/watch?v=qeTLc1K-Cds">Maps of Australian geology like never before</a>