From 1 - 10 / 89
  • The Arafura Basin contains a sequence of Palaeozoic rocks lying north-east of Darwin, and which extends from onshore Australia, to perhaps as far as the Irian Jaya mainland. There are over 9 km of Palaeozoic rocks preserved along the southern bounding fault of a major graben (the Arafura Graben) located in the southern part of the basin. In the uplifted centre of the graben, there is less than 3 km of the Palaeozoic section preserved. The basin is underlain by a Middle to Late Proterozoic sequence which thickens to the east, and is probably equivalent to the onshore McArthur Basin. Overlying the Arafura Basin is the Mesozoic Money Shoal Basin, which is approximately 1 km thick over the central parts of the graben, thickening rapidly to the west and thinning to the east and north. The structural cross-section that has been drawn is located entirely offshore. It has been compiled using modern seismic and well control. It runs from south-east of Tasman 1 in a general north and north-east direction tying with Torres 1 and Arafura 1. It passes through the central and north-eastern parts of the graben, and the north-eastern part of the basin. Two-way time to depth conversions were based on the velocity surveys from the wells within the graben, but were modified locally outside the graben. The structural analysis presented is largely based on the evidence found along the line of the section. A more complete structural analysis would require a regional examination of the entire seismic network. Information from the recently published Petroleum Basin Study on the Arafura Basin (Northern Territory Geological Survey) has been incorporated into this report, although there are major differences between some of their findings and the interpretations presented here. To date the major risk in hydrocarbon exploration has been finding adequate reservoir conditions and seal. Contradictory interpretations are present between the maturation and structural modelling of the graben. Untested plays include possible Permian and Triassic sediments (up to 5 km thick) which exist along the flanks of the graben and which will probably contain good source potential and improved reservoir conditions. To the north outside the graben, there are poorly explored areas where it is speculated that there are thick Palaeozoic and Proterozoic sequences.

  • The Buckley River-Lady Loretta 1:85,000 paleosurface map illustrates the distribution of relict indurated materials described using the RTMAP scheme developed by Geoscience Australia

  • In 2011 as part of the National CO2 Infrastructure Plan (NCIP), Geoscience Australia started a three year project to provide new pre-competitive data and a more detailed assessment of the Vlaming Sub-basin prospectivity for the storage of CO2. Initial assessment by Causebrook 2006 of this basin identified Gage Sandstone and South Perth Shale (SPS) formations as the main reservoir/seal pair suitable for long-term storage of CO2. SPS is a thick (1900 m) deltaic succession with highly variable lithologies. It was estimated that the SPS is capable of holding a column of CO2 of up to 663m based on 6 MICP tests (Causebrook, 2006). The current study found that sealing capacity of the SPS varies considerably across the basin depending on what part of the SPS Supersequence is present at that location. Applying a sequence-stratigraphic approach, the distribution of mudstone facies within the SPS Supersequence, was mapped across the basin. This facies is the effective sub-regional seal of the SPS. Analysis of the spatial distribution and thickness of the effective seal is used for characterisation of the containment potential in the Vlaming Sub-basin CO2 storage assessment.

  • Introduction This National Carbon Infrastructure Plan study assesses the suitability of the Vlaming Sub-basin for CO2 storage. The Vlaming Sub-basin is a Mesozoic depocentre within the offshore southern Perth Basin, Western Australia (Figure 1). It is around 23,000 km2 and contains up to 14 km of sediments. The Early Cretaceous Gage Sandstone was deposited in paleo-topographic lows of the Valanginian breakup unconformity and is overlain by the South Perth Shale regional seal. Together, these formations are the most prospective reservoir/seal pair for CO2 storage. The Gage Sandstone reservoir has porosities of 23-30% and permeabilities of 200-1800 mD. It lies mostly from 1000 - 3000 m below the seafloor, which is suitable for injection of supercritical CO2 and makes it an attractive target as a long-term storage reservoir. Methods & datasets To characterise the Gage reservoir, a detailed sequence stratigraphic analysis was conducted integrating 2D seismic interpretation, well log analysis and new biostratigraphic data (MacPhail, 2012). Paleogeographic reconstructions of components of the Gage Lowstand Systems Tract (LST) are based on seismic facies mapping, and well log and seismic interpretations. Results The Gage reservoir is a low stand systems tract that largely coincides with the Gage Sandstone and is defined by the presence of the lower G. mutabilis dinoflagellate zone. A palynological review of 6 wells led to a significant revision, at the local scale, of the Valanginian Unconformity and the extent of the G. mutabilis dinoflagellate zones (MacPhail, 2012). G. mutabilis dinoflagellates were originally deposited in lagoonal (or similar) environments and were subsequently redeposited in a restricted marine environment via mass transport flows. Mapping of the shelf break indicates that the Gage LST was deposited in water depths of >400 m. Intersected in 8 wells, the Gage LST forms part of a sand-rich submarine fan system (Figure 2) that includes channelized turbidites, low stand fan deposits, debris flows (Table 1). This interpretation is broadly consistent with Spring & Newell (1993) and Causebrook (2006). The Gage LST is thickest (up to 360 m) at the mouth of large canyons adjacent to the Badaminna Fault Zone (BFZ) and on the undulating basin plain west of Warnbro 1 (Figure 1). Paleogeographic maps depict the evolution of the submarine fan system (Figure 3). Sediment transport directions feeding the Gage LST are complex. Unit A is sourced from the northern canyon (Figure 3a). Subsequently, Unit B (Figure 3b) derived sediment from multiple directions including incised canyons adjacent to BFZ and E-W oriented canyons eroding into the Badaminna high. These coalesce on an undulating basin plain west of Warnbro 1. Minor additional input for the uppermost Unit C (Figure 3c) is derived from sources near Challenger 1. Summary 1: The Gage LST is an Early Cretaceous submarine fan system that began deposition during the G. mutabilis dinoflagellate zone. It ranges from confined canyon fill to outer fan deposits on an undulating basin plain. 2: The 3 units within the Gage LST show multidirectional sediment sources. The dominant supply is via large canyons running north-south adjacent to the Badaminna Fault Zone. 3: Seismic facies interpretations and palaeogeographic mapping show that the best quality reservoirs for potential CO2 storage are located in the outer fan (Unit C sub-unit 3) and the mounded canyon fill (Unit A). These are more likely to be laterally connected. 4: The defined units and palaeogeographic maps will be used in a regional reservoir model to estimate the storage capacity of the Gage LST reservoir.

  • As part of the Australian Government's National CO2 Infrastructure Plan (NCIP), Geoscience Australia undertook a CO2 storage assessment of the Vlaming Sub-basin. The Vlaming Sub-basin a Mesozoic depocentre within the offshore southern Perth Basin located about 30 km west of Perth, Western Australia. The main depocentres formed during the Middle Jurassic to Early Cretaceous extension. The post-rift succession comprises up to 1500 m of a complex fluvio-deltaic, shelfal and submarine fan system. Close proximity of the Vlaming Sub-basin to industrial sources of CO2 emissions in the Perth area drives the search for storage solutions. The Early Cretaceous Gage Sandstone was previously identified as a suitable reservoir for the long term geological storage of CO2 with the South Perth Shale acting as a regional seal. The Gage reservoir has porosities of 23-30% and permeabilities of 200-1800 mD. The study provides a more detailed characterisation of the post Valanginian Break-up reservoir - seal pair by conducting a sequence stratigraphic and palaeogeographic assessment of the SP Supersequence. It is based on an integrated sequence stratigraphic analysis of 19 wells and 10, 000 line kilometres of 2D reflection seismic data, and the assessment of new and revised biostratigraphic data, digital well logs and lithological interpretations of cuttings and core samples. Palaeogeographies were reconstructed by mapping higher-order prograding packages and establishing changes in sea level and sediment supply to portray the development of the delta system. The SP Supersequence incorporates two major deltaic systems operating from the north and south of the sub-basin which were deposited in a restricted marine environment. Prograding clinoforms are clearly imaged on regional 2D seismic lines. The deltaic succession incorporates submarine fan, pro-delta, delta-front to shelfal, deltaic shallow marine and fluvio-deltaic sediments. These were identified using seismic stratigraphic techniques and confirmed with well ties where available. The break of toe slope was particularly important in delineating the transition between silty slope sediments and fine-grained pro-delta shales which provide the seal for the Gage submarine fan complex. As the primary reservoir target, the Gage lowstand fan was investigated further by conducting seismic faces mapping to characterise seismic reflection continuity and amplitude variations. The suitability of this method was confirmed by obtaining comparable results based on the analysis of relative acoustic impedance of the seismic data. The Gage reservoir forms part of a sand-rich submarine fan system and was sub-divided into three units. It ranges from canyon confined inner fan deposits to middle fan deposits on a basin plain and slump deposits adjacent to the palaeotopographic highs. Directions of sediment supply are complex. Initially, the major sediment contributions are from a northern and southern canyon adjacent to the Badaminna Fault Zone. These coalesce in the inner middle fan and move westward onto the plain producing the outer middle fan. As time progresses sediment supply from the east becomes more significant. Although much of the submarine fan complex is not penetrated by wells, the inner fan is interpreted to contain stacked channelized high energy turbidity currents and debris flows that would provide the most suitable reservoir target due to good vertical and lateral sand connectivity. The middle outer fan deposits are predicted to contain finer-grained material hence would have poorer lateral and vertical communication.

  • Regolith-landform map and explanatory notes in area of patchy Mesozoic cover over late Precambrian to Devonian bedrock. Includes description of regolith materials, map units, landscape and regolith evolution, and potential geochemical exploration sample media

  • Palaeomagnetic data on weathered bedrock and apatite fission track thermochronology have been combined with depositional history to propose a framework for weathering deposition and erosion in the Northparkes mine area.

  • Previously undated post Devonian sediments are shown by plant macro- and microfossils to be Early Cretaceous, and thus part of the Eromanga Basin. Modern landscape in the northern Barrier Ranges results from differential erosion following post-Early Cretaceous deformation that folded these and underlying rocks, most probably in response to reverse movements on faults at the western margin of the Bancannia Trough.

  • Palaeogrographic analysis of the Early Cretaceous South Perth Supersequence.