From 1 - 10 / 227
  • This service represents a combination of two data products, the DEM_SRTM_1Second dataset and the Australian_Bathymetry_Topography dataset. This service was created to support the CO2SAP (Co2 Storage application) Project to create a transect elevation graph within the application. This data is not available as a dataset for download as a Geoscience Australia product. The DEM_SRTM_1Second service represents the National Digital Elevation Model (DEM) 1 Second product derived from the National DEM SRTM 1 Second. The DEM represents ground surface topography, with vegetation features removed using an automatic process supported by several vegetation maps. eCat record 72759. The Australian_Bathymetry_Topography service describes the bathymetry dataset of the Australian Exclusive Economic Zone and beyond. Bathymetry data was compiled by Geoscience Australia from multibeam and single beam data (derived from multiple sources), Australian Hydrographic Service (AHS) Laser Airborne Depth Sounding (LADS) data, Royal Australian Navy (RAN) fairsheets, the General Bathymetric Chart of the Oceans (GEBCO) bathymetric model, the 2 arc minute ETOPO (Smith and Sandwell, 1997) and 1 arc minute ETOPO satellite derived bathymetry (Amante and Eakins, 2008). Topographic data (onshore data) is based on the revised Australian 0.0025dd topography grid (Geoscience Australia, 2008), the 0.0025dd New Zealand topography grid (Geographx, 2008) and the 90m SRTM DEM (Jarvis et al, 2008). eCat record 67703. IMPORTANT INFORMATION For data within this service that lays out of the Australian boundary the following needs to be considered. This grid is not suitable for use as an aid to navigation, or to replace any products produced by the Australian Hydrographic Service. Geoscience Australia produces the 0.0025dd bathymetric grid of Australia specifically to provide regional and local broad scale context for scientific and industry projects, and public education. The 0.0025dd grid size is, in many regions of this grid, far in excess of the optimal grid size for some of the input data used. On parts of the continental shelf it may be possible to produce grids at higher resolution, especially where LADS or multibeam surveys exist. However these surveys typically only cover small areas and hence do not warrant the production of a regional scale grid at less than 0.0025dd. There are a number of bathymetric datasets that have not been included in this grid for various reasons.

  • A bathymetric grid of the South Tasman Rise Region (Longitudes 138° E - 158° E, Latitudes 38° S - 54° S) is produced. In doing so, the individual datasets used have been closely examined and any deficiencies noted for further follow up or have been rectified immediately and the changes documented. These datasets include modern multibeam data, coastline data obtained from georeferenced SPOT imagery, hydrographic quality data, echosounder data from research vessels and satellite derived bathymetric data. A hierarchical system was employed whereby the best and most extensive datasets were gridded first and applied as a mask to the next best dataset. A new masking grid would be formed from these datasets to pass non-overlapping data in the next best dataset. This procedure was employed until finally the satellite data were masked. All the various levels of masked data were then brought together by the gridding algorithm (Intrepid - Desmond Fitzgerald Associates) and an ERMapper format grid produced. A grid cell size of 0.00225° (nominal 250m) was used with many iterations of minimum curvature gridding and several passes of smoothing. The final grid is available in ERMapper, ArcInfo and ASCII xyz formats

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. This 81 sample dataset comprises acidextractable concentrations of trace elements (Fe, Mn, Co, Ni, Cu, Zn, Ge, As, Cd and Pb) in surface seabed sediments (~0 to 2 cm) from Jervis Bay.

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. This 126 sample dataset comprises chlorophyll a and pheophytin a measurements on surface seabed sediments (~0 to 2 cm) from Jervis Bay.

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. This 126 sample data set comprises TCO2 flux and pool data for surface seabed sediments (~0 to 2 cm).

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through co-located sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wave-generated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. This 110 sample data-set comprises salinity, dissolved oxygen, water temperature and light attenuation (KD) measurements from Jervis Bay.

  • Geoscience Australia carried out marine surveys in Jervis Bay (NSW) in 2007, 2008 and 2009 (GA303, GA305, GA309, GA312) to map seabed bathymetry and characterise benthic environments through colocated sampling of surface sediments (for textural and biogeochemical analysis) and infauna, observation of benthic habitats using underwater towed video and stills photography, and measurement of ocean tides and wavegenerated currents. Data and samples were acquired using the Defence Science and Technology Organisation (DSTO) Research Vessel Kimbla. Bathymetric mapping, sampling and tide/wave measurement were concentrated in a 3x5 km survey grid (named Darling Road Grid, DRG) within the southern part of the Jervis Bay, incorporating the bay entrance. Additional sampling and stills photography plus bathymetric mapping along transits was undertaken at representative habitat types outside the DRG. This 18 sample data set comprises %TOC, %TN, TOC/TN ratios, carbon and nitrogen isotopic ratios and major and trace element concnetrations of plant and algae tissues from Jervis Bay. The red algae likely belong to the genera Gracilaria edulis and Acrosorium venulosum which are abundant in the Bay, and are often observed to washup on the beaches.

  • The local Moran I grid calculates local autocorrelation of the bathymetry grid. It indicates local heterogeneity. The large and positive values represent positive autocorrelation or clumped pattern; the large negative values represent negative autocorrelation or checkerboard pattern; the values close to zero represent random local pattern. The grid was created from the bathymetry grid of Darwin Harbour. Please see the metadata of the bathymetry grid for details (GeoCat no: 74915).

  • The Jervis Bay Multibeam 2 survey, was acquired by Geoscience Australia after the purchase of the new shallow bathymetry acquisition systems Kongsberg EM3002D. This system is a mobile and compact system that can be installed on different vessels. This survey was acquired by the DSTO vessel, RV Kimbla during the 31st of May to the 5 of June 2008. The survey location was in Jervis Bay. The aim of the survey was to test the new bathymetry acquisition system and to acquire geophysical data on the shallow water (less than 100m water depth) seabed environment. The bathymetry grids are of 1m resolution projected in Easting and Northing WGS84 UTM 56S