From 1 - 10 / 51
  • In many areas of the world, vegetation dynamics in semi-arid floodplain environments have been seriously impacted by increased river regulation and groundwater use. With increases in regulation along many rivers in the Murray-Darling Basin, flood volume, seasonality and frequency have changed which has in turn affected the condition and distribution of vegetation. Floodplain vegetation can be degraded from both too much and too little water due to regulation. Over-regulation and increased use of groundwater in these landscapes can exacerbate the effects related to natural climate variability. Prolonged flooding of woody plants has been found to induce a number of physiological disturbances such as early stomatal closure and inhibition of photosynthesis. However, drought conditions can also result in leaf biomass reduction and sapwood area decline. Depending on the species, different inundation and drought tolerances are observed. Identification of groundwater-dependent terrestrial vegetation, and assessment of the relative importance of different water sources to vegetation dynamics, typically requires detailed ecophysiological studies over a number of seasons or years as shown in Chowilla, New South Wales [] and Swan Coastal Plain, Western Australia []. However, even when groundwater dependence can be quantified, results are often difficult to upscale beyond the plot scale. Quicker, more regional approaches to mapping groundwater-dependent vegetation have consequently evolved with technological advancements in remote sensing techniques. Such an approach was used in this study. LiDAR canopy digital elevation model (CDEM) and foliage projected cover (FPC) data were combined with Landsat imagery in order to characterise the spatial and temporal behaviour of woody vegetation in the Lower Darling Floodplain, New South Wales. The multi-temporal dynamics of the woody vegetation were then compared to the estimated availability of different water sources in order to better understand water requirements.

  • Londonderry - Drysdale TMI (rtp) with northeast illumination

  • Next Generation Mineral Mapping (NGMM) is a CSIRO Minerals Down Under initiative aimed at developing spectral sensing capabilities in collaboration with the government geological agencies across Australia for delivering a new range of pre-competitive geoscience information at low cost to the resources industry. A 2 year multi-organisational project was established in July 2006 and involved the collection of 25000 km2 of airborne HyMap imagery (~250 flight-lines at 5m pixel resolution), over 100 ASTER scenes and associated ground and laboratory validation data collected along major structural/geological corridors across Queensland. This paper will show the effectiveness of software/methods for delivering seamless, accurate mineral and geologic maps from HyMap and ASTER data through comparison with field and laboratory validation data, as well as some geological case histories including. - Geothermometric (metamorphic temperature) mapping using clay physicochemistry; - Local to regional hydrothermal alteration cells associated with the Century Pb-Zn and Starra Au-Cu deposits; and - Associated environmental indicators from remote spectral data for resource development, including dust mapping/monitoring. These results and capabilities also have major implications for mapping soil mineralogy and related properties/processes at local-, catchment- and continental-scales, including soil pH, metal availability, water (content, permeability/runoff), soil loss and organic carbon stocks. The mineral maps and associated data from this project are available on the web (www.em.csiro.au/NGMM).

  • Pixel Quality Assessment describes the results of a number of quality tests which are used to determine the quality of a Landsat image product in terms of, pixel saturation, pixel contiguity between spectral bands, whether the pixel is over land or sea, cloud contamination, cloud shadow and topographic shadow. Pixel Quality is used to filter an input Landsat image for downstream processing in a production workflow. It has general applicability to a number of image processing scenarios.

  • Londonderry - Drysdale First Vertical Derivative of TMI (rtp)

  • The Australian Geological Survey Organisation (AGSO) presents its solutions to mapping, GIS and image processing on the Internet. Software used is based on commercial and open source products. A distributed web mapping system is demonstrated, and concepts of distributed web mapping discussed. A model and prototype system for online delivery of satellite image data is presented. AGSO has been providing Internet access to spatial data since 1996. AGSO is the main repository for national geoscientific data, and services a wide range of clients across industry, government and the general public. Data provided range from point data, such as site descriptions and scientific analysis of samples, to line polygon and grid data, such as geological and geophysical surveys and associated maps. AGSO currently holds 500 MB of GIS data and a similar amount of image data on its web site, these data are expected to expand to a number of terabytes over the next few years. A primary role of AGSO is to provide its data to clients and stakeholders in as efficient a way as possible, hence its choice of Internet delivery. The major obstacle for supplying data of large volume over the Internet is bandwidth. Many AGSO clients are in remote locations with low bandwidth connections to the Internet. Possible solutions to this problem are presented. Examples of AGSO web tools are available at http://www.agso.gov.au/map/

  • If greyscale TMI map is purchased with colour TMI map the price is $269.80 (inc GST) for both