gamma-ray
Type of resources
Keywords
Publication year
Topics
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Australia-Wide Airborne Geophysical Survey 2 (AWAGS2), 2007 (P1152), radiometric line data, AWAGS levelled were acquired in 2007 by Geoscience Australia at 75000m line spacing and 80m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This Healesville South, Vic, 2001 (GSV3181) (P1566), radiometric line data, AWAGS levelled were acquired in 2001 by the VIC Government, and consisted of 5584 line-kilometres of data at 250m line spacing and 80m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.00063 degrees (approximately 66m) and shows potassium element concentration of the Robert merge, 1991-1998 in units of percent (or %). The data used to produce this grid was acquired in 1991 by the WA Government, and consisted of 82900 line-kilometres of data at 300m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.00049 degrees (approximately 50m) and shows thorium element concentration of the GSNSW Exploration NSW Area J, Cobar-Nymagee merge, 1999 in units of parts per million (or ppm). The data used to produce this grid was acquired in 1998 by the NSW Government, and consisted of 70181 line-kilometres of data at 250m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.00049 degrees (approximately 50m) and shows potassium element concentration of the GSNSW Exploration NSW Area J, Cobar-Nymagee merge, 1999 in units of percent (or %). The data used to produce this grid was acquired in 1998 by the NSW Government, and consisted of 70181 line-kilometres of data at 250m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00049 degrees (approximately 50m) and shows uranium element concentration of the GSNSW Exploration NSW Area J, Cobar-Nymagee merge, 1999 in units of parts per million (or ppm). The data used to produce this grid was acquired in 1998 by the NSW Government, and consisted of 70181 line-kilometres of data at 250m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This Sandstone combined dose rate grid geodetic has a cell size of 0.0005 degrees (approximately 52m) and shows the terrestrial dose rate of the Sandstone-Lake Mason-Arenite merge, 1994-2000. The data used to produce this grid was acquired in 1994 by the WA Government, and consisted of 64185 line-kilometres of data at a line spacing between 200m and 400m, and 40m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.0005 degrees (approximately 52m) and shows potassium element concentration of the Sandstone-Lake Mason-Arenite merge, 1994-2000 in units of percent (or %). The data used to produce this grid was acquired in 1994 by the WA Government, and consisted of 64185 line-kilometres of data at a line spacing between 200m and 400m, and 40m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.00083 degrees (approximately 88m) and shows thorium element concentration of the Jamieson Range-West Musgrave merge, 1998-2002 in units of parts per million (or ppm). The data used to produce this grid was acquired in 1998 by the WA Government, and consisted of 59784 line-kilometres of data at a line spacing between 200m and 400m, and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This West Musgrave, WA, 2002 (P863), radiometric line data, AWAGS levelled were acquired in 2002 by the WA Government, and consisted of 62081 line-kilometres of data at 400m line spacing and 60m terrain clearance. To constrain long wavelengths in the data, an independent data set, the Australia-wide Airborne Geophysical Survey (AWAGS) airborne magnetic data, was used to control the base levels of the survey data. This survey data is essentially levelled to AWAGS.