From 1 - 5 / 5
  • Waukarlycarly 1 is a stratigraphic well drilled in the southern part of the Canning Basin’s Waukarlycarly Embayment under Geoscience Australia’s Exploring for the Future program in collaboration with the Geological Survey of Western Australia to provide stratigraphic data for this poorly understood tectonic component. The well intersects a thin Cenozoic section, overlying Permian–Carboniferous fluvial clastics and glacial diamictites, with a thick pre-Carboniferous succession (855–2585 mRT) unconformably overlying the Neoproterozoic metasediments. Three informal siliciclastic intervals were defined based on the data from core lithology, well logs, fluid inclusions, chemical and mineral compositions; an Upper Sandstone (855–1348.1 mRT), a Middle Interval (1348.1–2443.4 mRT) and a Lower Sandstone (2443.4 –2585 mRT). The Middle Interval was further divided into six internal zones. Conventional methods were applied to interpret effective porosity, water saturation and elastic properties (Poisson’s ratio and Young’s modulus). Artificial neural network technology was employed on well logs to interpret the total organic carbon (TOC) content, pyrolysis products from the cracking of organic matter (S2), permeability, and mineral compositions. In the Upper Sandstone, average sandstone porosity and permeability are 17.9% and 464.5 mD and, 6.75 % and 10 mD in the Lower Sandstone. The Middle Interval claystone has an average porosity and permeability of 4.17 % and 0.006 mD, and average TOC content and S2 of 0.17 wt% and 0.047 mg HC/g rock with maximum values of 0.66 wt% and 0.46 mg HC/g rock. Average Poisson’s ratio and Young’s modulus of the claystone are 0.154 and 9.81 GPa. Correlations of mineral compositions, petrophysical, geomechanical and geochemical properties of the Middle Interval have been conducted. Young’s modulus and Poisson’s ratio are well correlated with the contents of key minerals, including Quartz, carbonates and TotalClay. Although TOC content is low at Waukarlycarly 1, hydrocarbon generation and migration have occurred elsewhere in the Waukarlycarly Embayment. The helium response just above the Neoproterozoic basement in the FIS profile is not associated with the hydrocarbon responses implying that these fluids have different sources.

  • The onshore Canning Basin in Western Australia is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the Exploring for the Future (EFTF) program; an Australian Government initiative dedicated to increasing investment in resource exploration in northern Australia. The four-year program led by Geoscience Australia focusses on the acquisition of new data and information about the potential mineral, energy and groundwater resources concealed beneath the surface in northern Australia and parts of South Australia. As part of this program, significant work has been carried out to deliver new pre-competitive data including new seismic acquisition, drilling of a stratigraphic well and the geochemical analysis of geological samples recovered from exploration wells. As part of this comprehensive analytical program, TOC and Rock-Eval pyrolysis analyses were undertaken by Geoscience Australia on selected rock samples from eight wells of the Canning Basin to establish their hydrocarbon-generating potential and thermal maturity. These samples were selected to infill gaps in the existing open file data with a particular focus on the Lower Ordovician Nambeet Formation for comparison with samples from the Waukarlycarly 1 well.

  • This report presents the results of chemostratigraphic analyses for samples of the Waukarlycarly 1 deep stratigraphic well drilled in in the Waukarlycarly Embayment of the Canning Basin. The drilling of the well was funded by Geoscience Australia’s Exploring for the Future initiative to improve the understanding of the sub-surface geology of this underexplored region of the southern Canning Basin. The well was drilled in partnership with Geological Survey of Western Australia (GSWA) as project operator. Waukarlycarly 1 reached a total depth (TD) of 2680.53 m at the end of November 2019 and was continuously cored from 580 mRT to TD. The work presented in this report constitutes part of the post-well data acquisition. An elemental and isotope chemostratigraphic study was carried out on 100 samples of the well to enable stratigraphic correlations to be made across the Canning Basin within the Ordovician section known to host source rocks. Nine chemostratigraphically distinct sedimentary packages are identified in the Waukarlycarly 1 well and five major chemical boundaries that may relate to unconformities, hiatal surfaces or sediment provenance changes are identified. The Ordovician sections in Waukarlycarly 1 have different chemical signals in comparison to those in other regional wells, suggestive of a different provenance for the origin of the sediments in the Waukarlycarly Embayment compared to the Kidson Sub-basin (Nicolay 1) and Broome Platform (Olympic 1).

  • The onshore Canning Basin in Western Australia is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the Exploring for the Future (EFTF) program; an Australian Government initiative dedicated to increasing investment in resource exploration in northern Australia. The four-year program led by Geoscience Australia focusses on the acquisition of new data and information about the potential mineral, energy and groundwater resources concealed beneath the surface in northern Australia and parts of South Australia. As part of this program, significant work has been carried out to deliver new pre-competitive data including new seismic acquisition, drilling of a stratigraphic well and the geochemical analysis of geological samples recovered from exploration wells. A regional, 872 km long 2D seismic line (18GA-KB1) acquired in 2018 by Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA), images the Kidson Sub-basin of the Canning Basin. In order to provide a test of geological interpretations made from the Kidson seismic survey, a deep stratigraphic well, Waukarlycarly 1, was drilled in 2019 in partnership between Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA) in the South West Canning Basin. The Waukarlycarly 1 stratigraphic well was drilled in the Waukarlycarly Embayment, 67 km west of Telfer and provides stratigraphic control for the geology imaged by the Kidson seismic line (Figure 1). The well was drilled to a total drillers depth (TD) of 2680.53 mRT and penetrated a thin Cenozoic cover overlying a Permo-Carboniferous fluvial clastic succession that includes glacial diamictite. These siliciclastics unconformably overlie an extremely thick (>1730 m) interpreted Devonian to Ordovician succession before terminating in low-grade metasediments of presumed Neoproterozoic age. Log characterisation, core analysis, geochronology, petrographic and palaeontological studies have been carried out to characterise the lithology, age and depositional environment of these sediments. As part of this comprehensive analytical program, TOC and Rock-Eval pyrolysis analyses were undertaken by Geoscience Australia on selected rock samples to establish their hydrocarbon-generating potential and thermal maturity.

  • Barnicarndy 1 is a stratigraphic well drilled in the southern part of the Canning Basin’s Barnicarndy Graben under Geoscience Australia’s Exploring for the Future program in collaboration with the Geological Survey of Western Australia to provide stratigraphic data for this poorly understood tectonic component. The well intersects a thin Cenozoic section, Permian–Carboniferous fluvial clastics and glacial diamictites and a thick pre-Carboniferous succession (855–2585 mRT) unconformably overlying Neoproterozoic metasedimentary rocks. Three informal siliciclastic intervals were defined based on core lithology, well logs, chemical and mineral compositions: the Upper Sandstone (855–1348.1 mRT), Middle Interval (1348.1–2443.4 mRT) and Lower Sandstone (2443.4–2585 mRT). The Middle Interval was further divided into six internal zones. Both conventional methods and artificial neural network technology were applied to well logs to interpret petrophysical and elastic properties, total organic carbon (TOC) content, pyrolysis products from the cracking of organic matter (S2) and mineral compositions. Average sandstone porosity and reservoir permeability are 17.9% and 464.5 mD in the Upper Sandstone and 6.75% and 10 mD in the Lower Sandstone. The Middle Interval claystone has an average porosity and permeability of 4.17% and 0.006 mD, and average TOC content and S2 value of 0.17 wt% and 0.047 mg HC/g rock, with maximum values of 0.66 wt% and 0.46 mg HC/g rock, respectively. Correlations of mineral compositions and petrophysical, geomechanical and organic geochemical properties of the Middle Interval have been conducted and demonstrate that these sediments are organically lean and lie within the oil and gas window. Published in The APPEA Journal 2021 <b>Citation:</b> Wang Liuqi, Edwards Dianne S., Bailey Adam, Carr Lidena K., Boreham Chris J., Grosjean Emmanuelle, Normore Leon, Anderson Jade, Jarrett Amber J. M., MacFarlane Susannah, Southby Chris, Carson Chris, Khider Kamal, Henson Paul, Haines Peter, Walker Mike (2021) Petrophysical and geochemical interpretations of well logs from the pre-Carboniferous succession in Barnicarndy 1, Canning Basin, Western Australia. <i>The APPEA Journal</i><b> 61</b>, 253-270. https://doi.org/10.1071/AJ20038