GEOLOGY
Type of resources
Keywords
Publication year
Scale
Topics
-
This Record presents new U–Pb geochronological data, obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP), from 43 samples of predominantly igneous rocks collected from the East Riverina region of the central Lachlan Orogen, New South Wales. The results presented herein correspond to the reporting period July 2016–June 2020. This work is part of an ongoing Geochronology Project, conducted by the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) under a National Collaborative Framework agreement, to better understand the geological evolution and mineral prospectivity of the central Lachlan Orogen in southern NSW (Bodorkos et al., 2013; 2015; 2016, 2018; Waltenberg et al., 2019).
-
This Record presents new Sensitive High Resolution Ion Micro Probe (SHRIMP) U–Pb geochronological results for six drill core samples from the Rover mineral field, an area of prospective Palaeoproterozoic rocks southwest of Tennant Creek that is entirely concealed below younger sedimentary cover rocks. The work is part of an ongoing collaborative effort between Geoscience Australia (GA) and the Northern Territory Geological Survey (NTGS) that aims to better understand the geological evolution and mineral potential of this region. SHRIMP U–Pb detrital zircon results from two samples, a meta-siltstone/mudstone from the Au–Cu–Bi Rover 1 deposit (drillhole WGR1D011; sample BW20PGF090) and a volcaniclastic sandstone from the Explorer 142 prospect (drillhole NR142D001; sample BW20PGF156) gave near identical maximum depositional ages of 1849.1 ± 3.1 Ma and 1848.9 ± 3.0 Ma respectively. The euhedral nature of the zircons in both samples and their unimodal age distributions, support the interpretation that the maximum depositional ages of these samples are good approximations for their true age of deposition. These results are a very close match with U–Pb zircon geochronology of some other drill core samples from the Rover mineral field. Two magmatic rocks from drillhole RVDD0002 (located in the East of the Rover field), gave ages of ca 1851–1850 Ma, while a volcaniclastic sandstone from RVDD0002 gave a maximum depositional age of 1854.0 ± 2.9 Ma (Cross et al 2021). Our new results from drillholes WGR1D011 and NR142D001 confirm the widespread presence of detrital zircons at ca 1854–1849 Ma across much of the Rover mineral field. SHRIMP U–Pb detrital zircon analysis was undertaken on four samples from the base metal Curiosity prospect drillhole, MXCURD002. The first sample analysed GS20PGF058 [520.0–525.7 m], has a maxima at ca 1842 Ma but youngest statistical grouping at 1729 ± 17 Ma (n = 6). This is in stark contrast with a previous sample from this drillhole (GS19DLH0056 [437.63–438.18 m]) that is 82 metres above GS20PGF058, and gave a MDA of 1854.0 ± 2.9 Ma (Cross et al 2021). In an effort to further investigate the ca 1729 Ma date given by GS20PGF058, three further samples were collected from drillhole MXCURD002, one sample below, GS20PGF190 [525.7–531.5 m] and two samples above, GS20PGF085 [515.0–520.0 m] and GS20PGF084 [468.1–473.45 m]. Additionally, samples GS20PGF190 and GS20PGF085 are continuations of the same meta-siltstone/mudstone unit sampled by GS20PGF058. These three samples returned maximum depositional ages of 1851.7 ± 3.9 Ma (GS20PGF085), 1846.6 ± 3.2 Ma (GS20PGF190) and 1841 ± 12 Ma (GS20PGF084). They are also indistinguishable within their uncertainties (MSWD = 0.71, POF = 0.49) and have an average date of ca 1848 Ma. Therefore, the evidence from SHRIMP U–Pb detrital zircon studies of four rocks from drillhole MXCURD002 (this study and that of Cross et al 2021), indicates that the metasedimentary rocks in MXCURD002 were probably deposited at ca 1850 Ma, similar to other metasedimentary units within the Rover mineral field. We suggest that the relatively younger statistical grouping in sample GS20PGF058 at ca 1730 Ma is possibly the result of isotopic re-setting due to a thermal and/or fluid event associated with lead–zinc–copper mineralisation at a similar time which has been recently reported by Farias et al (2022). Although other explanations to explain the ca 1730 Ma grains in this sample such as laboratory contamination or that the zircons have in fact preserved their original crystallisation age, cannot be ruled out. <b>Bibliographic Reference:</b> Cross AJ, Farias PG and Huston DL, 2022. Summary of results. Joint NTGS–GA geochronology project: Rover mineral field, Warramunga Province, July–December 2020. <i>Northern Territory Geological Survey</i>, <b>Record 2022-005</b>.
-
A large proportion of Australia’s onshore sedimentary basins remain exploration frontiers. Industry interest in these basins has recently increased due to the global and domestic energy demand, and the growth in unconventional hydrocarbon exploration. In 2016 and 2018, Geoscience Australia released an assessment of several central Australian basins that summarised the current status of geoscientific knowledge and petroleum exploration, and the key questions, for each basin. This publication provides a comprehensive assessment of the geology, petroleum systems, exploration status and data coverage for the Adavale Basin.
-
The Geoscience Australia Structural Measurements Database contains field measurements of geological structure features such as bedding, foliation, lineation, faults and folds from field sites, measured sections, and boreholes. The database is delivered as a layer in Geoscience Australia's "Geological Field Sites, Samples and Observations" web service.
-
As part of the Onshore Energy Systems Group’s program, late gas (methane) and compositional kinetics (1-, 2-, 4- and 14-component (phase) kinetics) were undertaken by GeoS4, Germany. The phase kinetics approach is outlined in Appendix 1. This report provides the data required to access the shale gas potential of source rocks from the Georgina Basin, Australia.
-
<p>This is a raster representing the base surface of the Nulla Basalt Province, inferred from sparse data available, dominated by private water bore records. This interpretation was conducted by a hydrogeologist from Geoscience Australia. <p>Caveats <p>• This is just one model, based on sparse data and considerable palaeotopographic interpretation <p>• This model relies on the input datasets being accurate. However it is noted that substantial uncertainty exists both in the location of private bores and the use of drillers’ logs for identifying stratigraphic contacts. <p>• The location of palaeothalwegs is imprecise, and often it is only indicative of the presence of a palaeovalley. <p>• The purpose of this model is for visualisation purposes, so should not be considered a definitive depth prediction dataset.
-
This is a raster representing the base surface of the McBride Basalt Province, inferred from sparse data available, dominated by private water bore records. This interpretation was conducted by a hydrogeologist from Geoscience Australia. Caveats • This is just one model, based on sparse data and considerable palaeotopographic interpretation • This model relies on the input datasets being accurate. However it is noted that substantial uncertainty exists both in the location of private bores and the use of drillers’ logs for identifying stratigraphic contacts. • The location of palaeothalwegs is imprecise, and often it is only indicative of the presence of a palaeovalley. • The purpose of this model is for visualisation purposes, so should not be considered a definitive depth prediction dataset.
-
<p>Dataset "Detailed surface geology – Upper Burdekin basalt provinces", downloaded from the Queensland Spatial Catalogue in April 2017 and clipped to the Upper Burdekin basalt provinces. <p>The polygons in this dataset are a digital representation of the distribution or extent of geological units within the area. Polygons have a range of attributes including unit name, age, lithological description and an abbreviated symbol for use in labelling the polygons. These have been extracted from the Rock Units Table held in Department of Natural Resources and Mines MERLIN Database. <p>© State of Queensland (Department of Natural Resources and Mines) 2017 Creative Commons Attribution
-
Geoscience Australia commissioned reprocessing of selected legacy 2D seismic data in the East Kimberley, onshore Bonaparte Basin as part of the Exploring for the Future (EFTF) program. Reprocessing of these data occurred between September 2017 and May 2018. Exploring for the Future (<a href="https://www.ga.gov.au/eftf/">https://www.ga.gov.au/eftf</a>) was a $100.5 million four-year (2016-20), Australian Government-funded program to provide a holistic picture of the potential mineral, energy and groundwater resources in northern Australia. The program has delivered new geoscience data, knowledge and decision support tools to support increased industry investment and sustainable economic development across the north. Groundwater is a critical resource that accounts for most water used across northern Australia. The groundwater component of the EFTF program focused on addressing groundwater resource knowledge gaps, to support future opportunities for economic development via irrigated agriculture, extractive industries and increased security of community water supplies. Through collaboration with State and Territory partners, the program undertook targeted regional investigations of groundwater systems and assessments of groundwater potential more broadly across the region. The program's activities, implemented by Geoscience Australia, involved application of innovative geoscience tools to collect, integrate and analyse a range of data. It includes geological and hydrogeological data, airborne and ground-based geophysical and hydrogeochemical surveys, remote sensing data as well as stratigraphic drilling. The new data and better understanding of groundwater systems also helps inform decision making about groundwater use to protect environmental and cultural assets. These outcomes strengthen investor confidence in resources and agricultural projects by de-risking groundwater in northern Australia. The package contains reprocessed data from ten surveys acquired between 1980 and 1997. In total 53 lines were reprocessed covering a fold area of approximately 618.9 line kilometres, with the objective to produce a modern industry standard 2D land seismic reflection dataset where possible from a selection of multiple legacy 2D data. The purpose of the reprocessing was twofold: 1) To image the near surface structural and stratigraphic configuration for linking to AEM data that is available in the Bonaparte Basin; and 2) To image the structure and stratigraphic architecture of the Paleozoic Bonaparte Basin. The dataset exhibits significant improvements in stack response in most of the reprocessed lines when final and legacy stacks were compared, especially in the shallow section. Optimum results were obtained from the noise attenuation workflows. A minimum processing flow was applied to BWA80, BWA81, and line BNT87-404 lines to avoid any signal leakage throughout the processing. Final data were delivered as minimum phase (care should be taken not to interpret zero crossings as geological boundaries), and final velocities produced a good match with the well checkshot velocities. The processing report from Down Under Geophysics is available for download with this release. Raw and processed data are available on request from <a href="mailto:clientservices@ga.gov.au&body=Ref: eCat 135578">clientservices@ga.gov.au</a> - Quote eCat# 135578. Processed stack SEG-Y files and ancillary data are available for download from this web page.
-
Geoscience Australia commissioned reprocessing of selected legacy onshore 2D reflection seismic data in the Kidson Sub-basin of the Canning Basin, Cobb Embayment in the SE Canning Basin, NW Canning Basin, and Southern Carnarvon, Western Australia. This reprocessing is a collaboration between the Geoscience Australia Exploring for the Future (EFTF) program and The Government of Western Australia, Department of Mines, Industry Regulation and Safety, Exploration Incentive Scheme (EIS). Reprocessing was carried out by Ion (Cairo) between January 2018 and September 2018. The Canning project comprised 30 lines from 5 vintages of data totalling 1412 km. The Carnarvon project comprised 36 lines from 6 vintages of data totalling 1440 km. This reprocessing is intended to produce an improved quality seismic dataset that will increase confidence in the mapping of the structure and stratigraphy of the onshore sedimentary basins of Western Australia. The new seismic reprocessed data is being made available as pre-competitive information to assist industry to better target areas likely to contain the next major oil, gas and mineral deposits. <b>Processed data for this survey are available on request from clientservices@ga.gov.au - Quote eCat# 144258</b>