From 1 - 10 / 21
  • The National Geochemical Survey of Australia (NGSA) provides an internally consistent, state-of-the-art, continental-scale geochemical dataset that can be used to assess areas of Australia more elevated in commodity metals and/or pathfinder elements than others. But do regions elevated in such elements correspond to known mineralized provinces, and what is the best method for detecting and thus potentially predicting those? Here, using base metal associations as an example, I compare a trivariate rank-based index and a multivariate-based Principal Component Analysis method. The analysis suggests that the simpler rank-based index better discriminates catchments endowed with known base metal mineralization from barren ones and could be used as a first-pass prospectivity tool. <b>Citation:</b> Patrice de Caritat, Continental-scale geochemical surveys and mineral prospectivity: Comparison of a trivariate and a multivariate approach, <i>Journal of Geochemical Exploration</i>, Volume 188, 2018, Pages 87-94, ISSN 0375-6742, https://doi.org/10.1016/j.gexplo.2018.01.014

  • Managed aquifer recharge (MAR) enhances recharge to aquifers. As part of the Exploring for the Future Southern Stuart Corridor project, remotely sensed data were used to map regolith materials and landforms, and to identify areas that represent potential MAR target areas for future investigation. Nine areas were identified, predominantly associated with alluvial landforms in low-gradient landscape settings. The surface materials are typically sandy, or sandy and silty, with the prospective areas overlying newly identified groundwater resources associated with Paleozoic sedimentary rocks of the Wiso and Georgina basins. The workflow used here can be rapidly rolled out across broader areas, and can be supplemented by higher-resolution, longer time-series remote-sensing data, coupled with data analytics, modelling and expert knowledge. Such an approach will help to identify areas of the arid interior that may be suitable for MAR schemes that could supplement water for remote communities, and agricultural and other natural resource developments. <b>Citation:</b> Smith, M.L., Hostetler, S. and Northey, J., 2020. Managed aquifer recharge prospectivity mapping in the Northern Territory arid zone using remotely sensed data. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • Bulk quantitative mineralogy of regolith is a useful indicator of lithological precursor (protolith), degree of weathering, and soil properties affecting various potential landuse decisions. To date, no national-scale maps of regolith mineralogy are available in Australia. Catchment outlet sediments collected over 80% of the continent as part of the National Geochemical Survey of Australia (NGSA) afford a unique opportunity to rapidly and cost-effectively determine regolith mineralogy using the archived sample material. This report releases mineralogical data and metadata obtained as part of a feasibility study in a selected pilot area for such a national regolith mineralogy database and atlas. The area chosen for this study is within the Darling-Curnamona-Delamerian (DCD) region of southeastern Australia. The DCD region was selected as a ‘deep-dive’ data acquisition and analysis by the Exploration for the Future (2020-2024) federal government initiative managed at Geoscience Australia. One hundred NGSA sites from the DCD region were prepared for X-Ray Diffraction (XRD) analysis, which consisted of qualitative mineral identification of the bulk samples (i.e., ‘major’ minerals), qualitative clay mineral identification of the <2 µm grain-size fraction, and quantitative analysis of both ‘major’ and clay minerals of the bulk sample. The identified mineral phases were quartz, plagioclase, K-feldspar, calcite, dolomite, gypsum, halite, hematite, goethite, rutile, zeolite, amphibole, talc, kaolinite, illite (including muscovite and biotite), palygorskite (including interstratified illite-smectite and vermiculite), smectite (including interstratified illite-smectite), vermiculite, and chlorite. Poorly diffracting material (PDM) was also quantified and reported as ‘amorphous’. Mineral identification relied on the EVA® software, whilst quantification was performed using Siroquant®. Resulting mineral abundances are reported with a Chi-squared goodness-of-fit between the actual diffractogram and a modelled diffractogram for each sample, as well as an estimated standard error (esd) measurement of uncertainty for each mineral phase quantified. Sensitivity down to 0.1 wt% (weight percent) was achieved, with any mineral detection below that threshold reported as ‘trace’. Although detailed interpretation of the mineralogical data is outside the remit of the present data release, preliminary observations of mineral abundance patterns suggest a strong link to geology, including proximity to fresh bedrock, weathering during sediment transport, and robust relationships between mineralogy and geochemistry. The mineralogical data generated by this study are presented in Appendix A of this report and are downloadable as a .csv file. Mineral abundance or presence/absence maps are shown in Appendices B and C to document regional mineralogical patterns.

  • The Regolith Map of Australia 1:5M scale dataset (2013 edition) is a seamless but partial national coverage of regolith-landform units, compiled for use at, or between 1:5 million, and 1:1 million scale. The data maps high-level regolith-landform units. The units appear as polygon geometries, and with attribute information identifying high-level regolith and landform nomenclatures and their hierarchy. The 2013 dataset is a completely new portrayal of Australia's regolith from that presented much earlier in 1986, in which a whole of continent view of Australia's regolith was based on a simpler desktop-based 1:5 million continental regolith terrain assessment, not directly linked with landforms and published by the Bureau of Mineral Resources Geology and Geophysics. The 2013 edition incorporates new published mapping in South Australia (2012), integrated with earlier field-based regolith-landform mapping data from the Northern Territory (2006) and later Queensland (2008). The attribute structure of the new dataset is also revised to be more compatible with the GeoSciML data standard, published by the IUGS Commission for Geoscience Information. The map data is compiled largely from simplifying and edge-matching of 1:250 000 scale regolith compilation maps. Some source regolith and geologic maps ranging in scale from 1:50 000 to 1:1 million were used together with LANDSAT7, radiometric, magnetics, and gravity imagery, in addition to a 9 second digital elevation model.

  • During the last 10-20 years, Geological Surveys around the world have undertaken a major effort towards delivering fully harmonized and tightly quality controlled low-density multi-element soil geochemical maps and datasets of vast regions including up to whole continents. Concentrations of between 45 and 60 elements commonly have been determined in a variety of different regolith types (e.g., sediment, soil). The multi-element datasets are published as complete geochemical atlases and made available to the general public. Several other geochemical datasets covering smaller areas but generally at a higher spatial density are also available. These datasets may, however, not be found by superficial internet-based searches because the elements are not mentioned individually either in the title or in the keyword lists of the original references. This publication attempts to increase the visibility and discoverability of these fundamental background datasets covering large areas up to whole continents. <b>Citation:</b> P. de Caritat, C. Reimann, D.B. Smith, X. Wang, Chemical elements in the environment: Multi-element geochemical datasets from continental- to national-scale surveys on four continents, <i>Applied Geochemistry</i>, Volume 89, 2018, Pages 150-159, ISSN 0883-2927, https://doi.org/10.1016/j.apgeochem.2017.11.010

  • <div>Geochemistry of soils, stream sediments, and overbank sediments, plays an important part in informing geochemical environmental baselines, mineral prospectivity, and environmental management practices. Australia has a large number of such surveys, but they are spatially isolated and often used in isolation. First released in 2020, the Levelled Geochemical Baseline of Australia focused on levelling such surveys across the North Australian Craton, so that they could be used as a seamless dataset. This data release acts as an update to the Levelled Geochemical Baseline of Australia by changing the focus to national scale and incorporating recently reanalysed legacy samples.</div><div><br></div><div>This work was undertaken as part of the Exploring for the Future program, an eight-year program by the Australian government. The Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, was an eight year, $225m investment by the Australian Government.</div><div><br></div><div><br></div><div><br></div><div><br></div>

  • The National Geochemical Survey of Australia (<a href="http://www.ga.gov.au/ngsa" title="NGSA website" target="_blank">NGSA</a>) is Australia’s only internally consistent, continental-scale <a href="http://dx.doi.org/10.11636/Record.2011.020" title="NGSA geochemical atlas and dataset" target="_blank">geochemical atlas and dataset</a>. The present dataset contains additional mineralogical data obtained on NGSA samples selected from the Darling-Curnamona-Delamerian (<a href="https://www.ga.gov.au/eftf/projects/darling-curnamona-delamerian" title="DCD website" target="_blank">DCD</a>) region of southeastern Australia for the first partial data release of the Heavy Mineral Map of Australia (HMMA) project. The HMMA, a collaborative project between Geoscience Australia and Curtin University underpinned by a pilot project establishing its feasibility, is part of the Australian Government-funded Exploring for the Future (<a href="https://www.ga.gov.au/eftf" title="EFTF website" target="_blank">EFTF</a>) program. The selected 223 NGSA sediment samples fall within the DCD polygon plus an approximately one-degree buffer. The samples were taken on average from 60 to 80 cm depth in floodplain landforms, dried and sieved to a 75-430 µm grainsize fraction, and the contained heavy minerals (HMs; i.e., those with a specific gravity >2.9 g/cm<sup>3</sup>) were separated by dense fluids and mounted on cylindrical epoxy mounts. After polishing and carbon-coating, the mounts were subjected to automated mineralogical analysis on a TESCAN® Integrated Mineral Analyzer (TIMA). Using scanning electron microscopy and backscatter electron imaging integrated with energy dispersive X-ray analysis, the TIMA identified over 140 different HMs in the DCD area. The dataset, consisting of over 29 million individual mineral grains identified, was quality controlled and validated by an expert team. The data released here can be visualised, explored and downloaded using an online, bespoke mineral network analysis tool (<a href="https://geoscienceaustralia.shinyapps.io/mna4hm/" title="MNA website" target="_blank">MNA</a>) built on a cloud-based platform. Accompanying this report are a data file of TIMA results and a mineralogy vocabulary file. When completed in 2023, it is hoped the HMMA project will positively impact mineral exploration and prospectivity modelling around Australia, as well as have other applications in earth and environmental sciences.

  • Preamble: The 'National Geochemical Survey of Australia: The Geochemical Atlas of Australia' was published in July 2011 along with a digital copy of the NGSA geochemical dataset (http://dx.doi.org/10.11636/Record.2011.020). The NGSA project is described here: www.ga.gov.au/ngsa. The present dataset contains additional geochemical data obtained on NGSA samples: the Lead Isotopes Dataset. Abstract: Over 1200 new lead (Pb) isotope analyses were obtained on catchment outlet sediment samples from the NGSA regolith archive to document the range and patterns of Pb isotope ratios in the surface regolith and their relationships to geology and anthropogenic activity. The selected samples included 1204 NGSA Top Outlet Sediment (TOS) samples taken from 0 to 10 cm depth and sieved to <2 mm (or ‘coarse’ fraction); three of these were analysed in duplicate for a total of 1207 Pb isotope analyses. Further, 12 Northern Australia Geochemical Survey (NAGS; http://dx.doi.org/10.11636/Record.2019.002) TOS samples from within a single NGSA catchment, also sieved to <2 mm, were analysed to provide an indication of smaller scale variability. Combined, we thus present 1219 new TOS coarse, internally comparable data points, which underpin new national regolith Pb isoscapes. Additionally, 16 NGSA Bottom Outlet Sediment (BOS; ~60 to 80 cm depth) samples, also sieved to <2 mm, and 16 NGSA TOS samples sieved to a finer grainsize (<75 um, or ‘fine’) fraction from selected NGSA catchments were also included to inform on Pb mobility and residence. Lead isotope analyses were performed by Candan Desem as part of her PhD research at the School of Geography, Earth and Atmospheric Sciences, University of Melbourne. After an initial ammonium acetate (AmAc) leach, the samples were digested in aqua regia (AR). Although a small number of samples were analysed after the AmAc leach, all samples were analysed after the second, AR digestion, preparation step. The analyses were performed without prior matrix removal using a Nu Instruments Attom single collector Sector Field-Inductively Coupled Plasma-Mass Spectrometer (SF-ICP-MS). The dried soil digests were redissolved in 2% HNO3 run solutions containing high-purity thallium (1 ppb Tl) and diluted to provide ~1 ppb Pb in solution. Admixture of natural, Pb-free Tl (with a nominal 205Tl/203Tl of 2.3871) allowed for correction of instrumental mass bias effects. Concentrations of matrix elements in the diluted AR digests are estimated to be in the range of 1–2 ppm. The SF-ICP-MS was operated in wet plasma mode using a Glass Expansion cyclonic spray chamber and glass nebuliser with an uptake rate of 0.33 mL/min. The instrument was tuned for maximum sensitivity and provided ~1 million counts per second/ppb Pb while maintaining flat-topped peaks. Each analysis, performed in the Attom’s ‘deflector peak jump’ mode, consists of 30 sets of 2000 sweeps of masses 202Hg, 203Tl, 204Pb, 205Tl, 206Pb, 207Pb and 208Pb, with dwell times of 500 μs and a total analysis time of 4.5 min. Each sample acquisition was preceded by a blank determination. All corrections for baseline, sample Hg interference (202Hg/204Pb ratios were always <0.043) and mass bias were performed online, producing typical in-run precisions (2 standard errors) of ±0.047 for 206Pb/204Pb, ±0.038 for 207Pb/204Pb, ±0.095 for 208Pb/204Pb, ±0.0012 for 207Pb/206Pb and ±0.0026 for 208Pb/206Pb. A small number of samples with low Pb concentrations exhibited very low signal sizes during analysis resulting in correspondingly high analytical uncertainties. Samples producing within-run uncertainties of >1% relative (measured on the 207Pb/204Pb ratio) were discarded as being insufficiently precise to contribute meaningfully to the dataset. Data quality was monitored using interspersed analyses of Tl-doped ~1 ppb solutions of the National Institute of Standards and Technology (NIST) SRM981 Pb standard, and several silicate reference materials: United States Geological Survey ‘BCR-2’ and ‘AGV-2’, Centre de Recherches Pétrographiques et Géochimiques ‘BR’ and Japan Geological Survey ‘JB-2’. In a typical session, up to 50 unknowns plus 15 standards were analysed using an ESI SC-2 DX autosampler. Although previous studies using the Attom SF-ICP-MS used sample-standard-bracketing techniques to correct for instrumental Pb mass bias, Tl doping was found to produce precise, accurate and reproducible results. Based upon the data for the BCR-2 and AGV-2 secondary reference materials, for which we have the most analyses, deviations from accepted values (accuracy) were typically <0.17%. Data for the remaining silicate standards appear slightly less accurate but these results may, to some extent, reflect uncertainty in the assigned literature values for these materials. Replicate runs of selected AR digests yielded similar reproducibility estimates. The results show a wide range of Pb isotope ratios in the NGSA (and NAGS) TOS <2 mm fraction samples across the continent (N = 1219): 206Pb/204Pb: Min = 15.558; Med ± Robust SD = 18.844 ± 0.454; Mean ± SD = 19.047 ± 1.073; Max = 30.635 207Pb/204Pb; Min = 14.358; Med ± Robust SD = 15.687 ± 0.091; Mean ± SD = 15.720 ± 0.221; Max = 18.012 208Pb/204Pb; Min = 33.558; Med ± Robust SD = 38.989 ± 0.586; Mean ± SD = 39.116 ± 1.094; Max = 48.873 207Pb/206Pb; Min = 0.5880; Med ± Robust SD = 0.8318 ± 0.0155; Mean ± SD = 0.8270 ± 0.0314; Max = 0.9847 208Pb/206Pb; Min = 1.4149; Med ± Robust SD = 2.0665 ± 0.0263; Mean ± SD = 2.0568 ± 0.0675; Max = 2.3002 These data allow the construction of the first continental-scale regolith Pb isotope maps (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 207Pb/206Pb, and 208Pb/206Pb isoscapes) of Australia and can be used to understand contributions of Pb from underlying bedrock (including Pb-rich mineralisation), wind-blown dust and possibly from anthropogenic sources (industrial, transport, agriculture, residential, waste handling). The complete dataset is available to download as a comma separated values (CSV) file from Geoscience Australia's website (http://dx.doi.org/10.26186/5ea8f6fd3de64). Isoscape grids (inverse distance weighting interpolated grids with a power coefficient of 2 prepared in QGis using GDAL gridding tool based on nearest neighbours) are also provided for the five Pb isotope ratios (IDW2NN.TIF files in zipped folder). Alternatively, the new Pb isotope data can be downloaded from and viewed on the GA Portal (https://portal.ga.gov.au/).

  • Remotely sensed data and updated DEM and radiometric datasets, combined with existing surface material and landform mapping were used to map regolith landform units for the Ti Tree, Western Davenport and Tennant Creek regions of the SSC project. This report describes the methods used and outlines the new mapping.

  • The AEM method measures regolith and rocks' bulk subsurface electrical conductivity, typically to a depth of several hundred meters. AEM survey data is widely used in Australia for mineral exploration (i.e. mapping undercover and detection of mineralisation), groundwater assessment (i.e. hydro-stratigraphy and water quality) and natural resource management (i.e. salinity assessment). Geoscience Australia (GA) has flown Large regional AEM surveys over Northern Australia, including Queensland, Northern Territory and Western Australia. The surveys were flown nominally at 20-kilometre line spacing, using the airborne electromagnetic systems that have signed technical deeds of staging with GA to ensure they can be modelled quantitatively. Geoscience Australia commissioned the survey as part of the Exploring for the Future (EFTF) program. The EFTF program is led by Geoscience Australia (GA), in collaboration with the Geological Surveys of the Northern Territory, Queensland, South Australia and Western Australia, and is investigating the potential mineral, energy and groundwater resources in northern Australia and South Australia. We have used a machine learning modelling approach that establishes predictive relationships between the inverted flight-line modelled conductivity with a suite of national environmental and geological covariates. These covariates include terrain derivatives, gamma-ray radiometric, geological maps, climate derived surfaces and satellite imagery. Conductivity-depth values were derived from a single model using GA's deterministic 1D smooth-30-layer layered-earth-inversion algorithm. (Brodie and Richardson 2015). Three conductivity depth interval predictions are generated to interpolate the actual modelled conductivity data, which is 20km apart. These depth slices include a 0-50cm, 9-11m and 22-27m depth prediction. Each depth interval was modelled and individually optimised using the gradient boosted tree algorithm. The training cross-validation step used label clusters or groups to minimise over-fitting. Many hundreds of conductivity models are generated (i.e. ensemble modelling). Here we use the median of the models as the conductivity prediction and the upper and lower percentiles (95th and 5th) to measure model uncertainty. Grids show conductivity (S/m) in log 10 units. Reported out-of-sample r-squares for each interval in order of increasing depth are 0.74, 0.64, and 0.67. A decline in model performance with increasing depth was expected due to the decrease in suitable covariates at greater depths. Modelled conductivities seem to be consistent with the geological, regolith, geomorphological, and climate processes in the study area. The conductivity grids are at the resolution of the covariates, which have a nominal pixel size of 85 meters. Datasets in this data package include; 1. 0-50cm depth interval 0_50cm_median.tif; 0_50_upper.tif; 0_50_lower.tif 2. 9-11m depth interval 9_11m_median.tif; 9_11m_upper.tif; 9_11m_lower.tif 3. 22-27m depth interval 22_27_median.tif; 22_27_upper.tif; 22_27_lower.tif 4. Covariate shift; Cov_shift.tif (higher values = great shift in covariates) Reference: Ross C Brodie & Murray Richardson (2015) Open Source Software for 1D Airborne Electromagnetic Inversion, ASEG Extended Abstracts, 2015:1, 1-3, DOI: 10.1071/ ASEG2015ab197