From 1 - 10 / 68
  • This presentation describes source rock data in addition to new compositional and stable isotopic data for 17 oils and six gases from the Amadeus Basin, central Australia. All data was analysed and interpreted by Geoscience Australia. The results of this study provide new insights into the origin and preservational history of hydrocarbons in the basin and provide a platform for future research directions.

  • The Browse Basin, located offshore on Australia's North West Shelf, contains major natural gas accumulations, some of which present high abundances of helium. The basin also contains large quantities of CO2 with some wells containing up to ~18 mol% CO2. Currently there is no information as to the origins of He and CO2 within the Browse Basin, despite this providing important information to the evolution of the natural gas. By understanding where components of the gas originate, it is possible to make predictions about areas that may be high in CO2, which would be problematic for production; conversely areas rich in He could present a second revenue stream from the same well.

  • The unexpected discovery of oil in Triassic sedimentary rocks of the Phoenix South 1 well on Australia’s North West Shelf (NWS) has catalysed exploration interest in pre-Jurassic plays in the region. Subsequent neighbouring wells Roc 1–2, Phoenix South 2–3 and Dorado 1–3 drilled between 2015 and 2019 penetrated gas and/or oil columns, with the Dorado field containing one of the largest oil resources found in Australia in three decades. This study aims to understand the source of the oils and gases of the greater Phoenix area, Bedout Sub-basin using a multiparameter geochemical approach. Isotopic analyses combined with biomarker data confirm that these fluids represent a new Triassic petroleum system on the NWS unrelated to the Lower Triassic Hovea Member petroleum system of the Perth Basin. The Bedout Sub-basin fluids were generated from source rocks deposited in paralic environments with mixed type II/III kerogen, with lagoonal organofacies exhibiting excellent liquids potential. The Roc 1–2 gases and the Phoenix South 1 oil are likely sourced proximally by Lower–Middle Triassic TR10–TR15 sequences. Loss of gas within the Phoenix South 1 fluid due to potential trap breach has resulted in the formation of in-place oil. These discoveries are testament to new hydrocarbon plays within the Lower–Middle Triassic succession on the NWS.

  • The Cooper Basin is a Pennsylvanian to Middle Triassic intracratonic basin in northeastern South Australia and southwestern Queensland (Gravestock et al., 1998; Draper, 2002; Carr et al., 2016). Exploration activity in the region has recently expanded with explorers pursuing a range of newly-identified unconventional hydrocarbon plays (Goldstein et al., 2012; Menpes et al., 2013; Greenstreet, 2015). In support of this ongoing exploration activity in the region, Hall et al. (2016a) reviewed the Cooper Basin source rock geochemistry and maturity based on a compilation of updated and quality controlled publically available total organic carbon (TOC), Rock-Eval pyrolysis and vitrinite reflectance data. This is the first study of its kind to be undertaken for the Cooper Basin as a whole and builds on the previous work of Boreham & Hill (1998) in South Australia. This data pack contains the supplementary material accompanying this report. The distribution, quantity, quality and thermal maturity of the organic matter were described for all formations within the Pennsylvanian¿Permian Gidgealpa Group and collectively for the formations within the Triassic Nappamerri Group (Hall et al., 2015a, 2016a). Where possible, data were also analysed by lithology. The total organic carbon (TOC) and Rock-Eval pyrolysis data were used to investigate source rock quality, maturity and kerogen type. Original Hydrogen Index (HIo) values for each formation and lithology were determined through the analysis of a subset of low maturity samples and through application of a maturity correction based on Cooper Basin-specific kinetics (Deighton et al., 2003; Mahlstedt et al., 2015). Where data density permits, maps of present day TOC content and both present day HI and original HI were created, showing the spatial variation in the amount and quality of the source rock present now and prior to the onset of hydrocarbon generation. This data pack includes all TOC and Rock Eval data for the Cooper Basin stratigraphic evaluated in Hall et al. (2016a). It also includes the grids of present day TOC for the shale and/or coaly shale intervals, along with the grids of present day and original HI by formation. These datasets quantify the spatial distribution, quantity and quality of the source rocks and provide important insights into the hydrocarbon prospectivity of the Cooper Basin (Hall et al., 2015b; Kuske et al., 2015). This was the first study to be completed as part of the Australian Petroleum Source Rock Mapping project, a new work program being undertaken at Geoscience Australia to improve our understanding of the petroleum resource potential of Australia's sedimentary basins.

  • The Otway Basin is a northwest-southeast trending rift basin which spans from onshore Victoria and South Australia into the deep-water offshore. The prospective supersequences within the basin are largely of Cretaceous age which host three possible petroleum systems (Austral 1, 2 and 3). While there is production from onshore depocentres, and the inboard Shipwreck Trough, the majority of the offshore basin remains underexplored. Recent regional studies have highlighted the need for further work across the underexplored parts of the basin and here we focus on the offshore northwest Otway Basin, integrating reinterpreted historical well data, newly acquired and recently reprocessed seismic data. This new Well Folio consists of composite logs and supporting data which includes interpreted lithologies, petrophysical analyses, the analysis of historic organic geochemistry and organic petrology. In addition, updated well markers are provided based on seismic interpretation and new biostratigraphy in key wells. This integrated study provides the basis for renewed prospectivity assessment in the northwest offshore portion of the Otway Basin.

  • The Roebuck Basin on Australia’s offshore north-western margin is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the Offshore Energy Systems Section. This offshore program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of the central North West Shelf and attract exploration investment to Australia. The recent oil and gas discoveries at Phoenix South 1 (2014), Roc 1 (2015-16), Roc 2 (2016), Phoenix South 2 (2016), Phoenix South 3 (2018), Dorado 1 (2018) and Dorado 2–3 (2019) in the Bedout Sub-basin demonstrate the presence of a petroleum system in Lower Triassic strata (Grosjean et al., 2021; Rollet et al., 2019). As part of this program, a range of organic geochemical analyses were acquired on petroleum fluids from the Dorado 1 and Roc 2 wells with these data released in this report.

  • <div>Exploring for the Future (EFTF) is an Australian Government program led by Geoscience Australia, in partnership with state and Northern Territory governments, and aimed at stimulating exploration now to ensure a sustainable, long-term future for Australia through an improved understanding of the nation’s minerals, energy and groundwater resource potential. </div><div>The EFTF program is currently focused on eight interrelated projects, united in growing our understanding of subsurface geology. One of these projects, the Barkly–Isa–Georgetown project, will deliver new data and knowledge to assess the mineral and energy potential in undercover regions between Tennant Creek, Mount Isa and Georgetown. Building on the work completed in the first four years of the Exploring for the Future program (2016-2020), the project undertook stratigraphic drilling in the East Tennant and South Nicholson regions, in collaboration with MinEx CRC and the Northern Territory Geological Survey (NTGS). This work tests geological interpretations and the inferred mineral and energy potential of these covered regions. Geoscience Australia is undertaking a range of analyses on physical samples from these drill holes including geochemistry and geochronology. </div><div>The South Nicholson National Drilling Initiative (NDI) Carrara 1 drill hole is the first drillhole to intersect the Proterozoic rocks of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys acquired as part of the EFTF. It is located on the western flanks of the Carrara Sub-basin on the South Nicholson Seismic line 17GA-SN1, reaching a total depth of 1751 m, intersecting ca. 630 m of Cambrian Georgina Basin overlying ca. 1100 m of Proterozoic carbonates, black shales and minor siliciclastics.</div><div>The NDI BK10 drill hole is the tenth drill hole drilled as part of the East Tennant project aimed to constrain the East Tennant basement geology and calibrate predictive mineral potential maps to further our understanding of the prospectivity of this region. NDI BK10 reached a depth of 766 m and intersected basement at 734 m. Overlying these basement metasediments of the Alroy Formation, the drillhole intersected about 440 m of Proterozoic rocks underlain by ca. 300 m rocks of Cambrian age from the Georgina Basin.</div><div>During coring of NDI Carrara 1 and NDI BK10, cores containing oil stains were identified and sent for geochemical analysis to Geoscience Australia. This report presents the geochemical data from these oil stains including biomarker and isotopic data.</div>

  • This study was commissioned by Geoscience Australia (GA) to produce a report on source rock maturity and maceral/organoclast assemblages for a suite of rock samples from from the MinEx CRC National Drilling Initiative (NDI) Carrara 1 drill hole in the Northern Territory, Australia. 25 samples consisting of 24 drill core samples and 1 drill cutting sample were studied using organic petrological methods to evaluate the organic matter type, content, thermal maturity and hydrocarbon potential. Vitrinite was absent in all the samples and variable amounts of bitumen was present throughout the stratigraphic section studied. Fluorescing lamalginite was present in the upper part of the section and no bioclasts were detected in the samples from the lower section. Vitrinite reflectance equivalents calculated from bitumen reflectance indicated that upper part of the section containing lamalginite is early to mid-mature and the lower part of the section is over-mature. Good potential for liquid hydrocarbons may exist in the upper part of the section and the overmature lower part of the stratigraphic section could be gas prone.

  • This database contains geochemical data for samples analysed both for inorganic and organic geochemistry. Analytical data are sourced from Geoscience Australia's Inorganic Geochemistry Database (OZCHEM) and Organic Geochemistry Database (ORGCHEM), respectively. The data are joined on a unique sample number. Inorganic geochemical data cover the majority of the periodic table, with metadata on analytical methods and detection limits. Organic geochemical data include results of pyrolysis, derivative calculated values, and, where available, isotopic composition of carbonates (D13C) and isotopic composition of rock nitrogen (D15N). Further, there are provisions for delivery of isotopic data for kerogen (H, C, N) and oxygen (O) for carbonates. Where available, sample descriptions include stratigraphic unit names and ages, and lithology. Location information includes coordinates of the sampled feature (eg, borehole), coordinates of the sample and sample depth. Interpretation of the combined inorganic and organic geochemistry for organic-rich shales will facilitate comprehensive characterisation of hydrocarbons source rocks and mineral commodities source and trap environments. All are achieved within the frameworks of petroleum and mineral systems analysis. The initial data delivered by this service include 1785 samples from 35 boreholes from 14 geological provinces, including recently released data for 442 samples from the South Nicholson National Drilling Initiative Carrara 1 stratigraphic drill hole (Butcher et al., 2021; Carson et al., 2021). Many sampled boreholes are located within the polygon of the Exploring for the Future Barkly-Isa-Georgetown project. This dataset will be updated periodically as more data become available.

  • This Geoscience Australia Record reports the findings of the Canning Basin Petroleum Systems Modelling Project. The southern, frontier portions of the Canning Basin have numerous potential hydrocarbon play opportunities, in particular unconventional gas plays, which remain untested. Of particular interest are Ordovician-aged petroleum systems. Geoscience Australia in collaboration with the Geological Survey of Western Australia acquired an 872 km long 2D seismic line across the south and south-west Canning Basin in 2018, and drilled the 2680 m stratigraphic hole Barnicarndy 1 in the Barnicarndy Graben to further develop the understanding of hydrocarbon prospectivity in these frontier regions. As part of the Exploring for the Future program Geoscience Australia contracted GNS Science to construct ten 1D petroleum systems models and one 2D model across the frontier southern parts of the basin. The aim was to combine interpretation of the newly acquired seismic data with interpretation of legacy and new well data, in particular organic geochemical data, to improve the understanding of the burial and thermal history, trap formation, generation and migration of hydrocarbons in the southern, frontier parts of the Canning Basin. This Record is a compilation of the work completed by GNS Science International Limited and the reports containing new data collected and analyzed relevant to the petroleum systems modelling.