From 1 - 10 / 57
  • <div>The Exploring for the Future (EFTF) program is an Australian government initiative aimed at stimulating investment in resource exploration and development. It operates multiple interconnected projects, such as the Australia’s Resources Framework (ARF), a continental-scale endeavor to enhance understanding of Australia's geology and resource potential. A module of ARF, the Geochemistry for Basin Prospectivity (G4BP), studies Australian basins with prospective base metal mineral systems. </div><div><br></div><div>The current report focuses on the Neoproterozoic segment of the Stuart Shelf region in South Australia, a part of the Adelaide Rift Complex. This research is conducted collaboratively with the Geological Survey of South Australia, examining sediment-hosted copper potential in the rift complex.</div><div><br></div><div>The Adelaide Rift Complex is a geological formation that underwent extensive sedimentation from the Neoproterozoic to early Cambrian, particularly within the rift zone. Stuart Shelf sediments overlay Mesoproterozoic magmatic and Paleoproterozoic metasediment layers. The complex hosts multiple copper deposits, which are usually associated with movement of basinal brines that leach metals from lower basinal layers or rift-related volcanic rocks.</div><div><br></div><div>To improve understanding of the geology of the Stuart Shelf and related copper mineralisation, two primary objectives were set: </div><div><br></div><div>1. Geochemical fingerprinting and baseline data collection: This involves compilation and reanalysis of existing data, along with new data collection aimed at providing comprehensive geochemical data for stratigraphic units within the Stuart Shelf.</div><div><br></div><div>2. Identification of mineral system components: Utilising data from the first objective, this phase aims to identify potential metal and fluid sources and potential sites of metal deposition. </div><div>In conjunction with these efforts, a GA-GSSA geochemical sampling project is underway, tying geochemistry to lithostratigraphic units and facies. The newly acquired geochemical data will be integrated into the overall GSSA-CSIRO project to contribute to a more comprehensive understanding of the sediment-hosted stratabound mineral system.</div><div><br></div>

  • This report contains new whole-rock and isotope geochemical data, associated sample metadata, an assessment of the data’s quality assurance, for 742 samples collected in and around the Curnamona and Delamerian provinces, across numerous drillcore sampling campaigns through 2021-23. The data can be downloaded via the Geoscience Australia EFTF portal (https://portal.ga.gov.au/persona/eftf) or in the files attached with this record (http://pid.geoscience.gov.au/dataset/ga/148651). Geochemical sampling in the Curnamona region straddles both South Australia and New South Wales. The objective of sampling was to obtain representative coverage (both stratigraphically and spatially) to support developing regional geochemical baselines (in conjunction with existing geochemistry). Thus, this sampling included both the Curnamona Province and the overlying basins (Eromanga Basin, Lake Eyre Basin). Whole-rock geochemistry is reported for 562 samples, with a subset of 13 samples analysed for Pb and Sr isotopes, and another subset of 36 samples analysed by thin section petrography (all presented herein). Geochemical sampling in the Delamerian region has focussed on available legacy drill core in South Australia, New South Wales and Victoria. The objective of sampling was to (systematically) constrain the geochemical character of magmatic rocks across the mainland extent of the Delamerian Orogen, as well as younger volcanics within the Delamerian Orogen and/or overlying cover. This geochemical sampling was conducted in conjunction with geochronology, mineral systems sampling and stratigraphic drilling (all components of the DCD project) to reinterpret the timing, character and fertility of the Delamerian Orogen. Whole-rock geochemistry is reported for 180 samples. Version 2.0 (published 28 November 2023) has added whole rock geochemistry for 22 new samples in the Delamerian region. The data products and report have been updated accordingly.

  • <div>This report contains new whole-rock and isotope (Pb and Sr) geochemical data, associated sample metadata, an assessment of the data’s quality assurance, for 76 samples collected from the Georgina Basin of the East Tennant National Drilling Initiative (NDI) in 2021. The data can be downloaded via the Geoscience Australia EFTF portal (https://portal.ga.gov.au/persona/eftf) or in the files attached with this record (http://pid.geoscience.gov.au/dataset/ga/148954).</div><div><br></div><div>This new geochemistry data release builds on the success of the East Tennant NDI, addressing the data-gap in earlier geochemical sampling of these holes, by providing whole-rock geochemistry (and Pb+Sr isotopes) for the Georgina Basin cover sequence. Improved geochemical characterisation of Georgina Basin geology is valuable from both a hydrogeological and mineral systems perspective. The Georgina Basin extends across much of the Northern Territory and into western Queensland, comprised of Cryogenian to Devonian sediment packages.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div>

  • Geoscience Australia and its predecessors have analysed the hydrochemistry of water sampled from bores, surface features, rainwater and core samples (pore water). Samples have been collected during drilling or monitoring projects, including Exploring for the Future (EFTF). The hydrochemistry database includes physical-chemical parameters (EC, pH, redox potential, dissolved oxygen), major and minor ions, trace elements, isotopes and nutrients. The resource is accessible via the Geoscience Australia Portal <a href="https://portal.ga.gov.au/">(https://portal.ga.gov.au/)</a>

  • <div>Diamond exploration over the past decade has led to the discovery of a new province of kimberlitic pipes (the Webb Province) in the Gibson Desert of central Australia. The Webb pipes comprise sparse macrocrystic olivine set in a groundmass of olivine, phlogopite, perovskite, spinel, clinopyroxene, titanian-andradite and carbonate. The pipes resemble ultramafic lamprophyres (notably aillikites) in their mineralogy, major and minor oxide chemistry, and initial 87Sr/ 86Sr and <em>ε</em>Nd-<em>ε</em>Hf isotopic compositions. Ion probe U-Pb geochronology on perovskite (806 ± 22 Ma) indicates the eruption of the pipes was co-eval with plume-related magmatism within central Australia (Willouran-Gairdner Volcanic Event) associated with the opening of the Centralian Superbasin and Rodinia supercontinent break-up. The equilibration pressure and temperature of mantle-derived garnet and chromian (Cr) diopside xenocrysts range between 17 and 40 kbar and 750–1320°C and define a paleo-lithospheric thickness of 140 ± 10 km. Chemical variations of xenocrysts define litho-chemical horizons within the shallow, middle, and deep sub-continental lithospheric mantle (SCLM). The shallow SCLM (50–70 km), which includes garnet-spinel and spinel lherzolite, contains Cr diopside with weakly refertilized rare earth element compositions and unenriched compositions. The mid-lithosphere (70–85 km) has lower modal abundances of Cr diopside. This layer corresponds to a seismic mid-lithosphere discontinuity interpreted as pargasite-bearing lherzolite. The deep SCLM (&gt;90 km) comprises refertilized garnet lherzolite that was metasomatized by a silicate-carbonatite melt.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div><strong>Citation:</strong></div><div>Sudholz, Z. J., et al. (2023). Petrology, age, and rift origin of ultramafic lamprophyres (aillikites) at Mount Webb, a new alkaline province in Central Australia. <i>Geochemistry, Geophysics, Geosystems</i>, 24, e2023GC011120.</div><div>https://doi.org/10.1029/2023GC011120</div>

  • <div>A groundwater chemistry, regolith chemistry and metadata record for legacy geochemical studies over the southern Curnamona Province done by GA and partners as part of CRC LEME from 1999 to 2005, that was never fully released. This includes comprehensive groundwater chemistry from more than 250 bores in the Broken Hill region, containing physicochemical parameters, major and trace elements, and a suite of isotopes (34S, Pb, Sr, 18O, D). Recent work on this dataset (in 2021) has added hydrostratigraphic information for these groundwater samples. Also included is a regolith geochemistry dataset collected adjacent to some of the groundwater bores which tests the geochemical response of a range of different size fractions, depths and digests.</div>

  • <b>Legacy service retired 29/11/2022 IMPORTANT NOTICE:</b> This web service has been deprecated. The Australian Onshore and Offshore Boreholes OGC service at https://services.ga.gov.au/gis/boreholes/ows should now be used for accessing Geoscience Australia borehole data. This is an Open Geospatial Consortium (OGC) web service providing access to Australian onshore and offshore borehole data. This web service is intended to complement the borehole GeoSciML-Portrayal v4.0 web service, providing access to the data in a simple, non-standardised structure. The borehole data includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types. The dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.

  • <div>This guide and template details data requirements for submission of mineral deposit geochemical data to the Critical Minerals in Ores (CMiO) database, hosted by Geoscience Australia, in partnership with the United States Geological Survey and the Geological Survey of Canada. The CMiO database is designed to capture multielement geochemical data from a wide variety of critical mineral-bearing deposits around the world. Samples included within this database must be well-characterized and come from localities that have been sufficiently studied to have a reasonable constraint on their deposit type and environment of formation. As such, only samples analysed by modern geochemical methods, and with certain minimum metadata attribution, can be accepted. Data that is submitted to the CMiO database will also be published via the Geoscience Australia Portal (portal.ga.gov.au) and Critical Minerals Mapping Initiative Portal (https://portal.ga.gov.au/persona/cmmi).&nbsp;</div><div><br></div>

  • Manuscript detailing the results of chlorite dissolution experiments conducted at Geoscience Australia.

  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This package contains data generated in the field as part of stratigraphic drilling operations in the Delamerian region of the western New South Wales during 2023 funded through the Exploring for the Future program. A range of geological, geophysical and geochemical data are included, as well as associated borehole information such as core photographs. The data can be viewed and downloaded via the Geoscience Australia Portal - https://portal.ga.gov.au/. The data that is available is from several databases which are associated to this record. <i>These data are published with the permission of the CEO, Geoscience Australia. </i>