From 1 - 10 / 39
  • Publicly available geological data in the north Bowen Basin region are compiled to produce statements of existing knowledge for natural hydrogen, hydrogen storage, coal and mineral occurrences. This web service summarises potential mineral, natural hydrogen, coal and carbon dioxide geological storage in the north Bowen Basin region.

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the Cooper Basin. This web service summarises the geological storage of carbon dioxide prospectivity of the Cooper Basin.

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the Galilee Basin. This web service summarises the geological storage of carbon dioxide prospectivity of the Galilee Basin.

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the Eromanga Basin. This web service summarises the geological storage of carbon dioxide prospectivity of the Eromanga Basin.

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the Galilee Basin. This web service summarises the geological storage of carbon dioxide prospectivity of the Galilee Basin.

  • In May 2013, Geoscience Australia, in collaboration with the Australian Institute of Marine Science, undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Heyward Formation (the seal unit overlying the main reservoir). The survey collected one hundred and eleven seabed sediment samples that were analysed for their grain size, textural composition and carbonate content. This dataset includes the results of grain size analysis measured by laser diffractometer.

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the Adavale Basin. This web service summarises the geological storage of carbon dioxide prospectivity of the Adavale Basin.

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the north Bowen Basin. This web service summarises the geological storage of carbon dioxide prospectivity of the north Bowen Basin.

  • This Record forms part of a study under the Exploring For The Future (EFTF) program (2020-2024). The Residual Oil Zone Project was designed to understand and identify residual oil zones in Australia, with the aim of developing this potential hydrocarbon and CO2 geological storage resource through CO2–Enhanced Oil Recovery. The work presented here is a collaborative study between Geoscience Australia and GeoGem Consultants. Residual Oil Zones (ROZ) represent a new and potentially viable oil resource for Australia, while at the same time providing a means to use and store carbon dioxide (CO2) through the application of CO2 enhanced oil recovery (CO2-EOR). These naturally water-flooded and water-saturated reservoirs, which contain a moderate amount of residual oil, can be associated with conventional fields (brownfields) or occur with no associated main pay zone (greenfields). Both types of ROZ are currently produced commercially through CO2-EOR in the USA, and are of growing interest internationally, but have not yet been explored in Australia. CO2-EOR has been in widespread practice in the USA since the oil shocks of the 1970’s. While tertiary CO2 injection usually targets oil remaining in fields that have been subject to water-flooding, there has been a parallel adoption of practices to recover vast amounts of paleo-oil that existed when many of these reservoirs were much fuller, before relatively recent (in geologic time) events caused structural and seal changes, resulting in natural water-flooding and/or migration of much of the oil out of the reservoir. The Permian Basin in Texas contains many examples where such Residual Oil Zones (ROZ’s) were found beneath conventional oil reservoirs. These ROZ are unproductive to conventional water flood operations but offer the possibility of an extra 9-15% recovery (of the ROZ OIP at discovery). This work reviews the lessons or insights that can be gained from the USA regarding ROZ field developments.

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the Cooper Basin. This data guide gives examples of how these data can be used to create the components of a workflow to identify geological storage of carbon dioxide (CO2) opportunities. The data guide is designed to support the data package that provide insights on the geological storage of CO2 in the Cooper Basin. The geological storage of CO2 assessment for the Cooper Basin encompasses 4 of the 6 geological intervals, termed plays – these intervals have been defined by Wainman et al. (2023). The assessment captures data from the Great Artesian Basin geological and hydrogeological surfaces update (Vizy and Rollet, 2022), Cooper Region Shale, tight and deep coal gas prospectivity of the Cooper Basin (Lech et al., 2020) (GBA), Cooper Basin architecture and lithofacies: Regional hydrocarbon prospectivity of the Cooper Basin (Hall et al., 2015) (CBAL), National Geoscience Mapping Accord Cooper and Eromanga Basins, Australia, seismic mapping data sets (NGMA, 2002), Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal (2020a), and the Petroleum Exploration and Production System of South Australia (PEPS, 2021) along with the scientific literature to inform the 4 components required for a potential geological storage of CO2 system. These datasets are used to map out geological properties relevant for geological storage of CO2 assessments. From these datasets, the following properties have been evaluated and mapped across the basin: injectivity, storage efficiency, containment and structural complexity. The data are compiled at a point in time to inform decisions on resource development opportunities. The data guide outlines the play-based workflow for assessing geological storage of CO2 prospectivity. Each of the elements required for a working geological storage of CO2 system is explained and mapped. These data were then merged and spatially multiplied to show the relative assessment of geological storage of CO2 prospectivity across the basin, at both play interval and basin scale. As an example of assessments contained within the data package, this data guide showcases the geological storage of CO2 prospectivity the Toolachee Play interval.